Options
Turlings, Ted
Nom
Turlings, Ted
Affiliation principale
Fonction
Professeur.e ordinaire
Email
ted.turlings@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 230
- PublicationAccès libreOdor-based real-time detection and identification of pests and diseases attacking crop plants(2024-07-29)
; ; ;Terunobu Akiyama; ; ;Kosuke Minami; ;Genki Yoshikawa; ;Felipe Lopez-Hilfiker; ;Luca CappellinPlants respond to attacks by herbivores and pathogens by releasing specific blends of volatile compounds and the resulting odor can be specific for the attacking species. We tested if these odors can be used to monitor the presence of pests and diseases in agriculture. Two methods were used, one employing piezoresistive membrane surface stress sensors and the other proton-transfer reaction mass spectrometry. Under laboratory conditions, both techniques readily distinguished between maize plants that were either undamaged, infested by caterpillars, or infected by a fungal pathogen. Under outdoor conditions, the spectrometer could be used to recognize plants with simulated caterpillar damage with about 80% accuracy. Further finetuning of these techniques should lead to the development of odor-sensing mobile devices capable of alerting farmers to the presence and exact location of pests and diseases in their fields. - PublicationAccès libreEntomopathogenic nematodes as an effective and sustainable alternative to control the fall armyworm in Africa(2024-04-16)
; ;Didace Bazagwira ;Livio Ruzzante ;Geraldine Ingabire ;Sacha Levivier; ;Joelle Kajuga ;Stefan Toepfer; Joann WhalenThe recent invasion of the fall armyworm (FAW), a voracious pest, into Africa and Asia has resulted in unprecedented increases in insecticide applications, especially in maize cultivation. The health and environmental hazards posed by these chemicals have prompted a call for alternative control practices. Entomopathogenic nematodes are highly lethal to the FAWs, but their application aboveground has been challenging. In this study, we report on season-long field trials with an innocuous biodegradable gel made from carboxymethyl cellulose containing local nematodes that we specifically developed to target the FAW. In several Rwandan maize fields with distinct climatic conditions and natural infestation rates, we compared armyworm presence and damage in control plots and plots that were treated with either our nematode gel formulation, a commercial liquid nematode formulation, or the commonly used contact insecticide cypermethrin. The treatments were applied to the whorl of each plant, which was repeated three to four times, at 2-week intervals, starting when the plants were still seedlings. Although all three treatments reduced leaf damage, only the gel formulation decreased caterpillar infestation by about 50% and yielded an additional ton of maize per hectare compared with untreated plots. Importantly, we believe that the use of nematodes can be cost-effective, since we used nematode doses across the whole season that were at least 3-fold lower than their normal application against belowground pests. The overall results imply that precisely formulated and easy-to-apply nematodes can be a highly effective, affordable, and sustainable alternative to insecticides for FAW control. - PublicationAccès libreCowpea volatiles induced by beet armyworm or fall armyworm differentially prime maize plants(2024-01-01)
; Exposure to herbivore-induced plant volatiles (HIPVs) is known to enhance the defense responses in plants. This so-called priming effect has only been marginally studied in intercropping systems. We tested whether HIPVs from cowpea, which often serves as an intercrop alongside maize, can prime herbivore-induced volatile emissions in maize. Conventional volatile collection assays and real-time mass spectrometry revealed that maize plants that were exposed to HIPVs from cowpea infested with Spodoptera exigua caterpillars emitted more than control plants when they themselves were subsequently damaged by the same pest. The enhanced emission was only evident on the first day after infestation. Maize plants that were exposed to HIPVs from cowpea infested by S. frugiperda larvae showed no priming effect and released considerably less upon S. frugiperda infestation than upon S. exigua infestation. The latter may be explained by the fact that S. frugiperda is particularly well adapted to feed on maize and is known to suppress maize HIPV emissions. Our results imply that HIPVs from cowpea, depending on the inducing insect herbivore, may strongly prime maize plants. This deserves further investigation, also in other intercropping systems, as it can have important consequences for tritrophic interactions and crop protection. - PublicationAccès libreGlowing belowground : investigating the evolution and biological functions of "Photorhabdus" bioluminescence(2024)
; ;Ricardo MachadoPhotorhabdus est un genre de bactéries vivant en symbiose avec des nématodes appartenant au genre Heterorhabditis. Ensemble, ils parasitent et tuent de petits arthropodes, y compris des insectes herbivores. Au cours du processus d'infection, les bactéries Photorhabdus produisent de la bioluminescence, rendant l'organisme parasité bioluminescent à son tour. La bioluminescence est une caractéristique répandue présente chez plus de 800 genres d'organismes et qui a évolué indépendamment au moins 94 fois au cours de l'évolution. Les bactéries Photorhabdus sont uniques car elles sont les seules bactéries terrestres connues à posséder cette capacité. Bien que la bioluminescence ait captivé les scientifiques pendant de nombreuses décennies, on sait peu de choses sur les fonctions biologiques de cette caractéristique dans les écosystèmes terrestres. Il a été postulé que la bioluminescence chez Photorhabdus résulte d'événements ancestraux de transfert horizontal de gènes. Diverses hypothèses ont été proposées concernant ses fonctions potentielles et certaines suggèrent qu'il pourrait s'agir d'un trait disparaissant sans rôle particulier. Dans cette thèse, j'ai adopté une approche interdisciplinaire pour étudier l'évolution et les fonctions biologiques de la bioluminescence chez Photorhabdus. Les principales conclusions de cette thèse incluent : (i) la bioluminescence de Photorhabdus présente une grande variabilité inter- et intra-spécifique ; (ii) la bioluminescence de Photorhabdus est un trait dynamique qui peut évoluer rapidement dans des conditions de laboratoire ; (iii) la bioluminescence ne diminue ni ne disparaît dans le genre Photorhabdus à travers des événements de spéciation successifs ; (iv) la bioluminescence est régulée par un réseau de gènes à composants multiples chez Photorhabdus ; (v) la bioluminescence est nécessaire à la symbiose entre les bactéries Photorhabdus et les nématodes Heterorhabditis ; (vi) la bioluminescence de Photorhabdus pourrait prévenir la concurrence chez les nématodes entomopathogènes ; (vii) les plantes produisent des métabolites secondaires de défense en réponse à l'exposition des racines à la bioluminescence de Photorhabdus. Cette thèse met en évidence les rôles cruciaux joués par la bioluminescence de Photorhabdus dans la relation symbiotique avec les nématodes Heterorhabditis, ainsi que ses fonctions régulatrices au sein des écosystèmes terrestres. ABSTRACT Photorhabdus is a genus of bacteria living in symbiosis with soil-dwelling nematodes belonging to the genus Heterorhabditis. Together, they parasitize and kill small arthropods, including herbivorous insects belowground. Photorhabdus bacteria have the singular capacity to chemically produce and emit cyan light, a phenomenon known as bioluminescence. During the infection process, Photorhabdus bacteria produce bioluminescence resulting in the glow of the parasitized organism. Bioluminescence is a widespread trait present in more than 800 genera of organisms that has evolved independently at least 94 times through evolution. Nonetheless, Photorhabdus bacteria are unique as they are the only known terrestrial bacteria to possess this capability. While bioluminescence has captivated scientists for many decades, little is known about the biological functions of this trait in soil ecosystems. Photorhabdus bioluminescence is thought to originate from ancient horizontal gene transfer events. Various hypotheses have been proposed regarding its potential functions and some suggest that it may be a disappearing trait with no particular role. In this thesis, I took an interdisciplinary approach to investigate the evolution and biological functions of Photorhabdus bioluminescence. The main findings from this thesis include: (i) Photorhabdus bioluminescence displays a great inter- and intra-specific variability across the genus; (ii) Photorhabdus bioluminescence is an evolutionary dynamic trait that can rapidly evolve under laboratory conditions in a strain-specific manner; (iii) bioluminescence neither decreases nor disappears in the Photorhabdus genus through subsequent speciation events; (iv) bioluminescence is regulated by a multi-component network of genes in Photorhabdus; (v) bioluminescence is required for successful symbiosis between Photorhabdus bacteria and Heterorhabditis nematodes; (vi) Photorhabdus bioluminescence might prevent competitions in entomopathogenic nematodes; (vii) plants produce defensive secondary metabolites in response to root exposure to Photorhabdus bioluminescence. This thesis contributes to a better understanding of the biological functions of belowground bioluminescence. It highlights the crucial roles played by Photorhabdus bioluminescence in the symbiotic relationship with Heterorhabditis nematodes, as well as its regulatory functions within soil ecosystems. - PublicationAccès libreField evidence for the role of plant volatiles induced by caterpillar-derived elicitors in the prey location behavior of predatory social wasps1. One assumed function of herbivore-induced plant volatiles (HIPVs) is to attract natural enemies of the inducing herbivores. Field evidence for this is scarce and often indirect. Also, the assumption that elicitors in insect oral secretions that trigger the volatile emissions are essential for attraction of natural enemies has not yet been demonstrated under field conditions. 2. After observing social wasps removing caterpillars from maize plants in an agricultural field, we hypothesized that these wasps use HIPVs to locate their prey. To test this, we conducted an experiment that simultaneously explored the importance of caterpillar oral secretions in the interaction. 3. We found that Spodoptera caterpillars placed on mechanically damaged plants treated with oral secretion were more likely to be attacked by wasps compared to caterpillars on plants that were only mechanically wounded. Both of the the latter treatments were considerably more attractive than plants that were only treated with oral secretion or left untreated. Subsequent analyses of headspace volatiles confirmed differences in emitted volatiles that likely account for the differential predation events across the treatments. 4. These findings highlight the importance of HIPVs in prey location by social wasps and provide evidence for the role that elicitors play in inducing attractive odor blends.
- PublicationAccès libreSoil salinization effects on volatile signals that mediate the induction of chemical defenses in wild cotton(2024)
;Teresa Quijano-Medina ;Yeyson Briones-May ;Uriel Solís-Rodríguez; ; ; ; ; ;Xoaquín MoreiraLuis Abdala-RobertsPlants respond to complex blends of above- and below-ground volatile organic compounds (VOCs) emitted by neighboring plants. These responses often involve priming (i.e., preparation) or induction (i.e., increase) of defenses by “receiver” plants upon exposure to VOCs released by herbivore-damaged neighboring “emitters.” However, recent work has shown that induc- tion of VOC emissions by herbivory is modulated by abiotic factors, potentially affecting plant–plant signaling. We tested the effect of soil salinization on the induction of VOC emissions in wild cotton (Gossypium hirsutum) due to leaf damage and its consequences for the induction of defenses in neighboring plants. To this end, we performed a greenhouse factorial experiment where emitter plants were subjected to augmented soil salinity (vs. ambient salinity) and within each group emitter plants were subsequently exposed to simulated caterpillar damage (mechanical leaf damage treated with Spodoptera frugiperda oral secretion) or no damage (control). After 48 h of exposure, we collected VOCs released by emitter plants and then damaged the receivers and collected their leaves to measure levels of chemical defenses (terpenoid aldehydes of known insecticidal effects). We found an interaction between leaf damage and salinization for two groups of VOCs released by emitters (sesquiterpenes and other aromatic compounds), whereby damaged receivers had higher emissions than control plants under ambient but not salinized soil conditions. We also found that, upon being damaged, receiver plants exposed to damaged emitters exhibited a significantly higher concentration of heliocides (but not gossypol) than control plants. However, salinization did not alter this VOC exposure effect on receiver induced responses to damage. Overall, we show that exposure to induced VOC emissions from damaged plants magnifies the induction of chemical defenses due to leaf damage in neigh- boring individuals and that this is not contingent on the level of soil salinity despite the latter's effect on VOC induction. - PublicationAccès libreCan herbivores sharing the same host plant be mutualists?(2023-02-28)
;Qingsong Liu; Yunhe LiResource partitioning is considered to be a prerequisite for coexisting species to evolve from competition to mutualism. This is uniquely different for two major pest insects of rice. These herbivores preferentially opt to coinfest the same host plants, and through plant-mediated mechanisms, cooperatively utilize these plants in a mutualistic manner. - PublicationAccès libreThe N‐terminal subunit of vitellogenin in planthopper eggs and saliva acts as a reliable elicitor that induces defenses in rice(2023-02-05)
;Jiamei Zeng; ;Wenhui Hu ;Xiaochen Jin ;Peng Kuai ;Wenhan Xiao ;Yukun Jian; Yonggen LouVitellogenins (Vgs) are critical for the development and fecundity of insects. As such, these essential proteins can be used by plants to reliably sense the presence of insects. We addressed this with a combination of molecular and chemical analyses, genetic transformation, bioactivity tests, and insect performance assays. The small N-terminal subunit of Vgs of the planthopper Nilaparvata lugens (NlVgN) was found to trigger strong defense responses in rice when it enters the plants during feeding or oviposition by the insect. The defenses induced by NlVgN not only decreased the hatching rate of N. lugens eggs, but also induced volatile emissions in plants, which rendered them attractive to a common egg parasitoid. VgN of other planthoppers triggered the same defenses in rice. We further show that VgN deposited during planthopper feeding compared with during oviposition induces a somewhat different response, probably to target the appropriate developmental stage of the insect. We also confirm that NlVgN is essential for planthopper growth, development, and fecundity. This study demonstrates that VgN in planthopper eggs and saliva acts as a reliable and unavoidable elicitor of plant defenses. Its importance for insect performance precludes evolutionary adaptions to prevent detection by rice plants. - PublicationAccès libreA novel strategy to control the fall armyworm with entomopathogenic nematodes(2023)
; La chenille légionnaire d'automne (Spodoptera frugiperda, Smith ; Lepidoptera : Noctuidae) est une espèce d'insecte originaire des Amériques connue pour être un ravageur agricole majeur. Elle peut se nourrir d'une grande variété de plantes, mais elle est particulièrement dévastatrice pour le maïs. L'invasion récente de la chenille légionnaire d'automne en Afrique et en Asie provoque des ravages considérables dans la culture du maïs, entraînant une augmentation importante de l'utilisation d'insecticides synthétiques nocifs, dont l'efficacité est souvent marginale. Cette efficacité limitée est principalement due au comportement alimentaire spécifique de ces chenilles. Elles se trouvent principalement cachées en profondeur dans les feuilles enroulées du maïs, ce qui en fait des cibles difficiles pour les insecticides de contact conventionnels. En outre, la chenille légionnaire d'automne a rapidement développée des résistances à une large gamme d'insecticides synthétiques ainsi qu'à certaines toxines de Bacillus thuringiensis (Bt) couramment utilisées contre les insectes nuisibles dans certaines régions du monde. Des solutions de lutte efficaces, sûres et durables sont primordiales pour garantir la sécurité alimentaire et préserver les organismes bénéfiques, tels que les pollinisateurs, ainsi que l'environnement. Plusieurs agents de contrôle biologique, tels que les nématodes entomopathogènes, peuvent être très efficaces contre des chenilles, mais leur application sur les feuilles des plantes est difficile. Les nématodes entomopathogènes sont des parasites qui ciblent spécifiquement les insectes. Ils peuplent les sols du monde entier et sont couramment utilisés comme agents de lutte biologique depuis des décennies, notamment parce qu'ils ont la capacité de localiser activement, d'infecter et de rapidement tuer des insectes. En tant qu'organismes du sol, les nématodes sont particulièrement sensibles aux conditions abiotiques aériennes, et notamment présentes sur le feuillage, telles que la dessiccation et le rayonnement UV. L'objectif de cette thèse est de relever ces défis en explorant de nouvelles solutions pour appliquer et protéger les nématodes entomopathogènes sur les feuilles de maïs, afin d'assurer un contrôle efficace et durable de la chenille légionnaire d'automne. Nous démontrons dans les chapitres 1 et 2 que des nématodes isolés localement représentent d'excellents candidats contre la chenille légionnaire d'automne. Ils offrent également l'avantage d'éviter le risque d'introduction d'espèces exotiques dans une région cible, associé à l'utilisation de nématodes commerciaux souvent non indigènes. Dans le chapitre 3, nous explorons différentes méthodes de formulation des nématodes pour une application foliaire. Une formulation développée lors ce travail à base de gel de carboxyméthylcellulose s’est avérée très efficace, tuant 100 % des chenilles en laboratoire et réduisant de manière significative l’infestation des plantes lors d'essais préliminaires sur le terrain au Rwanda. Dans le chapitre 4, nous évaluons, au long d'une saison complète de croissance du maïs au Rwanda, l’efficacité de nématodes formulés dans le gel. Les résultats démontrent que, formulés dans le gel, les nématodes ont systématiquement limité les dommages aux plantes. En outre, ce traitement a été nettement plus efficace pour réduire l'infestation des plantes que la cyperméthrine, un insecticide couramment utilisé, et a conduit à une augmentation du rendement par rapport aux plantes contrôles non traitées. Enfin, nous avons démontré au chapitre 5 que l'ajout de substances naturelles et facilement disponibles dans le gel prolongeait la survie et l'efficacité des nématodes exposés aux rayons UV, et ceci à un coût abordable. Cette avancée pourrait se traduire par une efficacité accrue des nématodes dans des conditions agricoles réelles et contribuer à étendre l'utilisation des nématodes contre les ravageurs foliaires. Cette thèse démontre le potentiel des nématodes entomopathogènes natifs, isolés localement, pour lutter contre la chenille légionnaire d'automne et représente une étape vers la gestion durable de ce ravageur dévastateur. ABSTRACT The fall armyworm (Spodoptera frugiperda, Smith; Lepidoptera: Noctuidae) is an insect species native to the Americas known to be a major agricultural pest. It can feed on a large variety of plants, but is particularly devastating to maize. The recent invasion of the fall armyworm in Africa and Asia has wreaked havoc in maize cultivation, leading to a tremendous increase in the use of harmful synthetic insecticides, which are often only marginally effective. This limited efficacy is mainly due to the specific feeding behaviour of the fall armyworm caterpillars, which are mostly found deep within the wrapped leaves of the maize whorl, making them difficult targets for conventional contact insecticides. In addition, the fall armyworm has rapidly developed resistances to a wide range of synthetic insecticides as well as to some Bacillus thuringiensis (Bt) toxins commonly employed against insect pests in some regions of the world. Effective, safe and sustainable control alternatives are desperately needed to ensure food security as well as to preserve beneficial organisms, such as pollinators, and the environment. Several biological control agents, such as entomopathogenic nematodes, can be quite effective in killing armyworms, but their application on plant leaves is challenging. Entomopathogenic nematodes are parasites that specifically target insects. They live in soils around the world and are commonly used as biological control agents for decades, notably because they have the ability to actively locate, infect and swiftly kill insects. As soil organisms, nematodes are particularly sensitive to the abiotic conditions found aboveground and on foliage, such as desiccation and UV radiation. The aim of this thesis is to address these challenges by exploring novel solutions to apply and protect entomopathogenic nematodes on maize leaves to ensure effective as well as sustainable control of the fall armyworm. We showed in Chapters 1 and 2 that locally isolated nematodes represent excellent candidates against the fall armyworm. They also offer the advantage of preventing the risk of introducing foreign species in a target country, associated with the use of often non-native commercially available nematodes. In Chapter 3, we explored different methods to formulate nematodes for aboveground application. We found a here-developed carboxymethyl cellulose gel formulation to be quite effective, killing 100% caterpillars in laboratory conditions and significantly reducing FAW infestations in preliminary field trials in Rwanda. In Chapter 4, we showed that throughout a full maize growing season in Rwanda, nematodes formulated in the gel consistently limited plant damage. In addition, the nematode-gel was significantly more effective than the commonly used insecticide cypermethrin in reducing armyworms infestation. This led to an increased grain yield as compared to untreated control plants. Lastly, we demonstrated in Chapter 5 that the addition of affordable, readily available, natural substances to the gel formulation prolonged the survival and effectiveness of nematodes exposed to UV radiation. This could translate into an increased efficacy of the nematode-gel formulation in realistic farming conditions as well as contribute to expanding the use of nematodes against aboveground pests. This thesis demonstrates the potential of locally isolated entomopathogenic nematodes for fall armyworm control and represents a step towards the sustainable management of this devastating pest. - PublicationAccès libreSoil salinization disrupts plant–plant signaling effects on extra-floral nectar induction in wild cotton(2023)
;Yeyson Briones-May ;Teresa Quijano-Medina ;Biiniza Pérez-Niño; ; ; Luis Abdala-RobertsPlant–plant interactions via volatile organic compounds (VOCs) have received much attention, but how abiotic stresses affect these interactions is poorly understood. We tested the effect of VOCs exposure from damaged conspecifics on the production of extra-floral nectar (EFN) in wild cotton plants (Gossypium hirsutum), a coastal species in northern Yucatan (Mexico), and whether soil salinization affected these responses. We placed plants in mesh cages, and within each cage assigned plants as emitters or receivers. We exposed emitters to either ambient or augmented soil salinity to simulate a salinity shock, and within each group subjected half of the emitters to no damage or artificial leaf damage with caterpillar regurgitant. Damage increased the emission of sesquiterpenes and aromatic compounds under ambient but not under augmented salinity. Cor- respondingly, exposure to VOCs from damaged emitters had effect on receiver EFN induction, but this effect was contingent on salinization. Receivers produced more EFN in response to damage after being exposed to VOCs from damaged emitters when the latter were grown under ambient salinity, but not when they were subjected to salinization. These results suggest complex effects of abiotic factors on VOC-mediated plant interactions.