Voici les éléments 1 - 5 sur 5
  • Publication
    Accès libre
    Soil salinization effects on volatile signals that mediate the induction of chemical defenses in wild cotton
    (2024)
    Teresa Quijano-Medina
    ;
    Yeyson Briones-May
    ;
    Uriel Solís-Rodríguez
    ;
    ; ; ; ; ;
    Xoaquín Moreira
    ;
    Luis Abdala-Roberts
    Plants respond to complex blends of above- and below-ground volatile organic compounds (VOCs) emitted by neighboring plants. These responses often involve priming (i.e., preparation) or induction (i.e., increase) of defenses by “receiver” plants upon exposure to VOCs released by herbivore-damaged neighboring “emitters.” However, recent work has shown that induc- tion of VOC emissions by herbivory is modulated by abiotic factors, potentially affecting plant–plant signaling. We tested the effect of soil salinization on the induction of VOC emissions in wild cotton (Gossypium hirsutum) due to leaf damage and its consequences for the induction of defenses in neighboring plants. To this end, we performed a greenhouse factorial experiment where emitter plants were subjected to augmented soil salinity (vs. ambient salinity) and within each group emitter plants were subsequently exposed to simulated caterpillar damage (mechanical leaf damage treated with Spodoptera frugiperda oral secretion) or no damage (control). After 48 h of exposure, we collected VOCs released by emitter plants and then damaged the receivers and collected their leaves to measure levels of chemical defenses (terpenoid aldehydes of known insecticidal effects). We found an interaction between leaf damage and salinization for two groups of VOCs released by emitters (sesquiterpenes and other aromatic compounds), whereby damaged receivers had higher emissions than control plants under ambient but not salinized soil conditions. We also found that, upon being damaged, receiver plants exposed to damaged emitters exhibited a significantly higher concentration of heliocides (but not gossypol) than control plants. However, salinization did not alter this VOC exposure effect on receiver induced responses to damage. Overall, we show that exposure to induced VOC emissions from damaged plants magnifies the induction of chemical defenses due to leaf damage in neigh- boring individuals and that this is not contingent on the level of soil salinity despite the latter's effect on VOC induction.
  • Publication
    Accès libre
    The N‐terminal subunit of vitellogenin in planthopper eggs and saliva acts as a reliable elicitor that induces defenses in rice
    (2023-02-05)
    Jiamei Zeng
    ;
    ;
    Wenhui Hu
    ;
    Xiaochen Jin
    ;
    Peng Kuai
    ;
    Wenhan Xiao
    ;
    Yukun Jian
    ;
    ;
    Yonggen Lou
    Vitellogenins (Vgs) are critical for the development and fecundity of insects. As such, these essential proteins can be used by plants to reliably sense the presence of insects. We addressed this with a combination of molecular and chemical analyses, genetic transformation, bioactivity tests, and insect performance assays. The small N-terminal subunit of Vgs of the planthopper Nilaparvata lugens (NlVgN) was found to trigger strong defense responses in rice when it enters the plants during feeding or oviposition by the insect. The defenses induced by NlVgN not only decreased the hatching rate of N. lugens eggs, but also induced volatile emissions in plants, which rendered them attractive to a common egg parasitoid. VgN of other planthoppers triggered the same defenses in rice. We further show that VgN deposited during planthopper feeding compared with during oviposition induces a somewhat different response, probably to target the appropriate developmental stage of the insect. We also confirm that NlVgN is essential for planthopper growth, development, and fecundity. This study demonstrates that VgN in planthopper eggs and saliva acts as a reliable and unavoidable elicitor of plant defenses. Its importance for insect performance precludes evolutionary adaptions to prevent detection by rice plants.
  • Publication
    Accès libre
    Aphid and caterpillar feeding drive similar patterns of induced defences and resistance to subsequent herbivory in wild cotton
    (2023)
    Teresa Quijano-Medina
    ;
    Jonathan Interian-Aguiñaga
    ;
    Uriel Solís-Rodríguez
    ;
    ; ; ; ;
    Marta Francisco
    ;
    José A. Ramos-Zapata
    ;
    ;
    Xoaquín Moreira
    ;
    Luis Abdala-Roberts
    Plant-induced responses to attack often mediate interactions between different species of insect herbivores. These effects are predicted to be contingent on the herbivore’s feeding guild, whereby prior feeding by insects should negatively impact subsequent feeding by insects of the same guild (induced resistance) but may positively influence insects of a differ- ent guild (induced susceptibility) due to interfering crosstalk between plant biochemical pathways specific to each feeding guild. We compared the effects of prior feeding by leaf-chewing caterpillars (Spodoptera frugiperda) vs. sap-sucking aphids (Aphis gossypii) on induced defences in wild cotton (Gossypium hirsutum) and the consequences of these attacks on subse- quently feeding caterpillars (S. frugiperda). To this end, we conducted a greenhouse experiment where cotton plants were either left undamaged or first exposed to caterpillar or aphid feeding, and we subsequently placed caterpillars on the plants to assess their performance. We also collected leaves to assess the induction of chemical defences in response to herbivory. We found that prior feeding by both aphids and caterpillars resulted in reductions in consumed leaf area, caterpillar mass gain, and caterpillar survival compared with control plants. Concomitantly, prior aphid and caterpillar herbivory caused similar increases in phenolic compounds (flavonoids and hydroxycinnamic acids) and defensive terpenoids (hemigossypolone) compared with control plants. Overall, these findings indicate that these insects confer a similar mode and level of induced resistance in wild cotton plants, calling for further work addressing the biochemical mechanisms underpinning these effects.
  • Publication
    Accès libre
    Stemborer‐induced rice plant volatiles boost direct and indirect resistance in neighboring plants
    (2022-10-18)
    Chengcheng Yao
    ;
    Lixiao Du
    ;
    Qingsong Liu
    ;
    Xiaoyun Hu
    ;
    ; ;
    Yunhe Li
    - Herbivore-induced plant volatiles (HIPVs) are known to be perceived by neighboring plants, resulting in induction or priming of chemical defenses. There is little information on the defense responses that are triggered by these plant–plant interactions, and the phenomenon has rarely been studied in rice. - Using chemical and molecular analyses in combination with insect behavioral and perfor- mance experiments, we studied how volatiles emitted by rice plants infested by the striped stemborer (SSB) Chilo suppressalis affect defenses against this pest in conspecific plants. - Compared with rice plants exposed to the volatiles from uninfested plants, plants exposed to SSB-induced volatiles showed enhanced direct and indirect resistance to SSB. When sub- jected to caterpillar damage, the HIPV-exposed plants showed increased expression of jas- monic acid (JA) signaling genes, resulting in JA accumulation and higher levels of defensive proteinase inhibitors. Moreover, plants exposed to SSB-induced volatiles emitted larger amounts of inducible volatiles and were more attractive to the parasitoid Cotesia chilonis. - By unraveling the factors involved in HIPV-mediated defense priming in rice, we reveal a key defensive role for proteinase inhibitors. These findings pave the way for novel rice man- agement strategies to enhance the plant’s resistance to one of its most devastating pests.
  • Publication
    Accès libre
    Belowground and aboveground herbivory differentially affect the transcriptome in roots and shoots of maize
    Plants recognize and respond to feeding by herbivorous insects by upregulating their local and systemic defenses. While defense induction by aboveground herbivores has been well studied, far less is known about local and systemic defense responses against attacks by belowground herbivores. Here, we investigated and compared the responses of the maize transcriptome to belowground and aboveground mechanical damage and infestation by two well-adapted herbivores: the soil-dwelling western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and the leaf- chewing fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). In responses to both herbivores, maize plants were found to alter local transcription of genes involved in phytohormone signaling, primary and secondary metabolism. Induction by real herbivore damage was considerably stronger and modified the expression of more genes than mechanical damage. Feeding by the corn rootworm had a strong impact on the shoot transcriptome, including the activation of genes involved in defense and development. By contrast, feeding by the fall armyworm induced only few transcriptional changes in the roots. In conclusion, feeding by a leaf chewer and a root feeder differentially affects the local and systemic defense of maize plants. Besides revealing clear differences in how maize plants respond to feeding by these specialized herbivores, this study reveals several novel genes that may play key roles in plant–insect interactions and thus sets the stage for in depth research into the mechanism that can be exploited for improved crop protection.