Voici les éléments 1 - 10 sur 10
  • Publication
    Accès libre
    Odor-based real-time detection and identification of pests and diseases attacking crop plants
    (2024-07-29) ; ;
    Terunobu Akiyama
    ;
    ; ;
    Kosuke Minami
    ;
    ;
    Genki Yoshikawa
    ;
    ;
    Felipe Lopez-Hilfiker
    ;
    ;
    Luca Cappellin
    ;
    Plants respond to attacks by herbivores and pathogens by releasing specific blends of volatile compounds and the resulting odor can be specific for the attacking species. We tested if these odors can be used to monitor the presence of pests and diseases in agriculture. Two methods were used, one employing piezoresistive membrane surface stress sensors and the other proton-transfer reaction mass spectrometry. Under laboratory conditions, both techniques readily distinguished between maize plants that were either undamaged, infested by caterpillars, or infected by a fungal pathogen. Under outdoor conditions, the spectrometer could be used to recognize plants with simulated caterpillar damage with about 80% accuracy. Further finetuning of these techniques should lead to the development of odor-sensing mobile devices capable of alerting farmers to the presence and exact location of pests and diseases in their fields.
  • Publication
    Accès libre
    A novel strategy to control the fall armyworm with entomopathogenic nematodes
    La chenille légionnaire d'automne (Spodoptera frugiperda, Smith ; Lepidoptera : Noctuidae) est une espèce d'insecte originaire des Amériques connue pour être un ravageur agricole majeur. Elle peut se nourrir d'une grande variété de plantes, mais elle est particulièrement dévastatrice pour le maïs. L'invasion récente de la chenille légionnaire d'automne en Afrique et en Asie provoque des ravages considérables dans la culture du maïs, entraînant une augmentation importante de l'utilisation d'insecticides synthétiques nocifs, dont l'efficacité est souvent marginale. Cette efficacité limitée est principalement due au comportement alimentaire spécifique de ces chenilles. Elles se trouvent principalement cachées en profondeur dans les feuilles enroulées du maïs, ce qui en fait des cibles difficiles pour les insecticides de contact conventionnels. En outre, la chenille légionnaire d'automne a rapidement développée des résistances à une large gamme d'insecticides synthétiques ainsi qu'à certaines toxines de Bacillus thuringiensis (Bt) couramment utilisées contre les insectes nuisibles dans certaines régions du monde. Des solutions de lutte efficaces, sûres et durables sont primordiales pour garantir la sécurité alimentaire et préserver les organismes bénéfiques, tels que les pollinisateurs, ainsi que l'environnement. Plusieurs agents de contrôle biologique, tels que les nématodes entomopathogènes, peuvent être très efficaces contre des chenilles, mais leur application sur les feuilles des plantes est difficile. Les nématodes entomopathogènes sont des parasites qui ciblent spécifiquement les insectes. Ils peuplent les sols du monde entier et sont couramment utilisés comme agents de lutte biologique depuis des décennies, notamment parce qu'ils ont la capacité de localiser activement, d'infecter et de rapidement tuer des insectes. En tant qu'organismes du sol, les nématodes sont particulièrement sensibles aux conditions abiotiques aériennes, et notamment présentes sur le feuillage, telles que la dessiccation et le rayonnement UV. L'objectif de cette thèse est de relever ces défis en explorant de nouvelles solutions pour appliquer et protéger les nématodes entomopathogènes sur les feuilles de maïs, afin d'assurer un contrôle efficace et durable de la chenille légionnaire d'automne. Nous démontrons dans les chapitres 1 et 2 que des nématodes isolés localement représentent d'excellents candidats contre la chenille légionnaire d'automne. Ils offrent également l'avantage d'éviter le risque d'introduction d'espèces exotiques dans une région cible, associé à l'utilisation de nématodes commerciaux souvent non indigènes. Dans le chapitre 3, nous explorons différentes méthodes de formulation des nématodes pour une application foliaire. Une formulation développée lors ce travail à base de gel de carboxyméthylcellulose s’est avérée très efficace, tuant 100 % des chenilles en laboratoire et réduisant de manière significative l’infestation des plantes lors d'essais préliminaires sur le terrain au Rwanda. Dans le chapitre 4, nous évaluons, au long d'une saison complète de croissance du maïs au Rwanda, l’efficacité de nématodes formulés dans le gel. Les résultats démontrent que, formulés dans le gel, les nématodes ont systématiquement limité les dommages aux plantes. En outre, ce traitement a été nettement plus efficace pour réduire l'infestation des plantes que la cyperméthrine, un insecticide couramment utilisé, et a conduit à une augmentation du rendement par rapport aux plantes contrôles non traitées. Enfin, nous avons démontré au chapitre 5 que l'ajout de substances naturelles et facilement disponibles dans le gel prolongeait la survie et l'efficacité des nématodes exposés aux rayons UV, et ceci à un coût abordable. Cette avancée pourrait se traduire par une efficacité accrue des nématodes dans des conditions agricoles réelles et contribuer à étendre l'utilisation des nématodes contre les ravageurs foliaires. Cette thèse démontre le potentiel des nématodes entomopathogènes natifs, isolés localement, pour lutter contre la chenille légionnaire d'automne et représente une étape vers la gestion durable de ce ravageur dévastateur. ABSTRACT The fall armyworm (Spodoptera frugiperda, Smith; Lepidoptera: Noctuidae) is an insect species native to the Americas known to be a major agricultural pest. It can feed on a large variety of plants, but is particularly devastating to maize. The recent invasion of the fall armyworm in Africa and Asia has wreaked havoc in maize cultivation, leading to a tremendous increase in the use of harmful synthetic insecticides, which are often only marginally effective. This limited efficacy is mainly due to the specific feeding behaviour of the fall armyworm caterpillars, which are mostly found deep within the wrapped leaves of the maize whorl, making them difficult targets for conventional contact insecticides. In addition, the fall armyworm has rapidly developed resistances to a wide range of synthetic insecticides as well as to some Bacillus thuringiensis (Bt) toxins commonly employed against insect pests in some regions of the world. Effective, safe and sustainable control alternatives are desperately needed to ensure food security as well as to preserve beneficial organisms, such as pollinators, and the environment. Several biological control agents, such as entomopathogenic nematodes, can be quite effective in killing armyworms, but their application on plant leaves is challenging. Entomopathogenic nematodes are parasites that specifically target insects. They live in soils around the world and are commonly used as biological control agents for decades, notably because they have the ability to actively locate, infect and swiftly kill insects. As soil organisms, nematodes are particularly sensitive to the abiotic conditions found aboveground and on foliage, such as desiccation and UV radiation. The aim of this thesis is to address these challenges by exploring novel solutions to apply and protect entomopathogenic nematodes on maize leaves to ensure effective as well as sustainable control of the fall armyworm. We showed in Chapters 1 and 2 that locally isolated nematodes represent excellent candidates against the fall armyworm. They also offer the advantage of preventing the risk of introducing foreign species in a target country, associated with the use of often non-native commercially available nematodes. In Chapter 3, we explored different methods to formulate nematodes for aboveground application. We found a here-developed carboxymethyl cellulose gel formulation to be quite effective, killing 100% caterpillars in laboratory conditions and significantly reducing FAW infestations in preliminary field trials in Rwanda. In Chapter 4, we showed that throughout a full maize growing season in Rwanda, nematodes formulated in the gel consistently limited plant damage. In addition, the nematode-gel was significantly more effective than the commonly used insecticide cypermethrin in reducing armyworms infestation. This led to an increased grain yield as compared to untreated control plants. Lastly, we demonstrated in Chapter 5 that the addition of affordable, readily available, natural substances to the gel formulation prolonged the survival and effectiveness of nematodes exposed to UV radiation. This could translate into an increased efficacy of the nematode-gel formulation in realistic farming conditions as well as contribute to expanding the use of nematodes against aboveground pests. This thesis demonstrates the potential of locally isolated entomopathogenic nematodes for fall armyworm control and represents a step towards the sustainable management of this devastating pest.
  • Publication
    Accès libre
    Comparative Screening of Mexican, Rwandan and Commercial Entomopathogenic Nematodes to Be Used against Invasive Fall Armyworm, Spodoptera frugiperda
    (2022-2-16) ;
    De Gianni, Lara
    ;
    Machado, Ricardo A. R.
    ;
    ;
    Bernal, Julio S.
    ;
    Karangwa, Patrick
    ;
    Kajuga, Joelle
    ;
    Waweru, Bancy
    ;
    Bazagwira, Didace
    ;
    ;
    Toepfer, Stefan
    ;
    The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond.
  • Publication
    Accès libre
    Tritrophic interactions : possible host-plants effects on the resistance of "Diabrotica" pests to natural enemies
    La sous-tribu Diabroticina de chrysomèles comprend de nombreux ravageurs importants des cultures agricoles et horticoles dans les Amériques, tels que le maïs et le concombre. L'une des espèces les plus dévastatrices, la chrysomèle des racines de maïs Diabrotica virgifera virgifera (WCR), est également un ravageur envahissant en Europe. Pour ce ravageur et les espèces de Diabrotica apparentées, le développement d'une lutte biologique efficace est nécessaire de toute urgence, et pour cela, des connaissances supplémentaires sur les interactions tri-trophiques entre Diabrotica, leurs plantes hôtes et leurs ennemis naturels sont nécessaires. Dans cette thèse, j’ai exploré les adaptations des ravageurs Diabrotica à leurs plantes hôtes avec leurs composés défensifs, et évalué l’éventuelle protection que les larves de Diabrotica obtiennent après l'ingestion de ces métabolites secondaires des plantes. Au cours d'échantillonnages sur le terrain au Mexique, j’ai observé que le parasitisme des coléoptères Diabroticina adultes par des parasitoïdes est minime (Chapitre I), mais j’ai constaté que les larves peuvent être infectées avec succès par des nématodes entomopathogènes (EPN) adaptés (Chapitre II). Des isolats d'EPN hautement infectieux collectés dans des champs de maïs mexicains pourraient être des candidats prometteurs pour contrôler WCR en Europe. Ces isolats et/ou leurs bactéries endosymbiotiques pourraient être adaptés à l'arsenal de défense déployé par les larves de WCR, qui comprend la séquestration des benzoxazinoïdes du maïs, mais des stratégies inconnues supplémentaires semblent également être impliquées. Les larves du généraliste Diabrotica balteata ne séquestrent pas des benzoxazinoïdes après s'être nourries des plantes de maïs et semblent moins capables de résister aux infections à EPN que les WCR. Cependant, elles sont capables de séquestrer des cucurbitacines après avoir mangé des plantes de concombre (Chapitre III). J'ai fourni des preuves solides que les larves de D. balteata peuvent transformer et séquestrer les cucurbitacines des plants de concombre. Cependant, je n'ai trouvé aucune preuve que les cucurbitacines séquestrées puissent protéger les larves de l'infection par des EPN, ni de l'attaque par des insectes prédateurs, des champignons entomopathogènes ou des bactéries. La performance des larves n'a pas non plus été affectée positivement par la teneur en cucurbitacines des tissus végétaux qu'elles ont consommées, d'où la signification adaptative de la séquestration de cucurbitacines reste à élucider. Curieusement, j’ai observé que les larves de D. balteata se nourrissent activement de tissus au-dessus de la surface, tels que tiges, cotylédons et feuilles, ce qui m’a incité à étudier si ce comportement procure des avantages et si d'autres espèces de Diabrotica ont un comportement similaire (Chapitre IV). Les larves de D. balteata, D. undecimpunctata et D. virgifera, normalement décrites comme larves de racines, se sont toutes avérées capables de se nourrir de feuilles ainsi que de racines de différentes plantes agricoles contenant des métabolites secondaires distincts. Pourtant, leurs performances et leur sensibilité à l'infection par des EPN n’ont pas été affectées différemment par le tissu que les larves avaient consommées. Ensemble, ces résultats contribuent à une meilleure compréhension de l'impact des métabolites secondaires des plante hôte ingérés par des insectes herbivores sur le troisième niveau trophique. Le succès des espèces de Diabrotica en tant que ravageurs des cultures semble être lié à leurs caractéristiques uniques pour survivre dans un environnement imprévisible en se nourrissant de différentes plantes et tissus, faisant face avec succès à une grande variété de composés de défense des plantes, qui dans certains cas peuvent fournir une protection contre les ennemis naturels. J’émet l'hypothèse que les larves de Diabrotica se nourrissant de maïs sont capables de détoxifier les benzoxazinoïdes, et discute de l'origine et de l'importance adaptative de la séquestration de cucurbitacines par les espèces de Diabrotica, qui ne semblerait pas liée à la défense contre les ennemis naturels. Enfin, les isolats d'EPN obtenus, ainsi que les nouvelles connaissances sur le comportement alimentaire des larves de Diabrotica rapportées dans cette thèse, contribueront, espérons-le, au développement de stratégies de biocontrôle nouvelles et efficaces contre les ravageurs du genre Diabrotica. ABSTRACT The subtribe Diabroticina of chrysomelid beetles includes many important pests of extensive and horticultural crops in the Americas, such as maize and cucumber. One of the most devastating species, the western corn rootworm Diabrotica virgifera virgifera (WCR), is also an invasive pest in Europe. For this and related Diabrotica pests, the development of efficient biological control is urgently needed, and for this further knowledge on tritrophic interactions of Diabrotica, their host plants and their natural enemies is required. In this thesis, I explored the adaptations of Diabrotica pests to their host plants and the plants’ defensive compounds, and evaluated the possible protection that Diabrotica larvae derive from ingesting these plant secondary metabolites. During field surveys in Mexico, I observed that parasitism of adult Diabroticina beetles by parasitoids is minimal (Chapter I), but found that the larvae can be successfully infected by adapted entomopathogenic nematodes (EPN) (Chapter II). Highly-infective EPN isolates collected in Mexican maize fields could be promising candidates to control the maizespecialist WCR in Europe. These isolates and/or their endosymbiotic bacteria may have adapted to the defense arsenal deployed by WCR larvae, which includes the sequestration of maize benzoxazinoids, but additional unknown strategies seem to be also involved. Larvae of the generalist Diabrotica balteata do not sequester benzoxazinoids after feeding on maize and seem to be less able to resist EPN infections than WCR. However, they are able to sequester cucurbitacins after feeding on cucumber plants (Chapter III). I provided strong evidence that D. balteata larvae can transformation and sequester cucurbitacins from cucumber plants. However, I found no evidence that the sequestered cucurbitacins can protect the larvae from infection by EPN, nor from the attack by insect predators, entomopathogenic fungi or bacteria. Larval performance was also not positively affected by cucurbitacin contents in plant tissues that they consumed, hence the adaptive significance of cucurbitacin sequestration remains to be unraveled. Surprisingly, the D. balteata larvae were observed to actively forage on aboveground tissues, which prompted us to study whether this behavior provides any benefits and if other Diabrotica species do the same (Chapter IV). Larvae of D. balteata, D. undecimpunctata and D. virgifera were all found to be able to feed on leaves as well as roots from different agricultural plants that contain distinct secondary metabolites. Yet, their performance and the susceptibility against EPN infection were not differentially impacted by the tissue that the larvae had fed on. Taken together, these results contribute to a better understanding of the impact of host plant secondary metabolites ingested by insect herbivores on the third trophic level. The success of Diabrotica species as crop pests seems to be related to their unique traits to survive in an unpredictable environment by feeding on different plants and tissues, successfully coping with a wide variety of plant defense chemicals, which in some cases may provide protection against natural enemies. I hypothesize that maize- feeding Diabrotica larvae may be able to detoxify benzoxazinoids, and discuss the origin and adaptive significance of cucurbitacin sequestration by Diabrotica species, which appears not to be related to defense against natural enemies. Finally, the isolates of EPN obtained, as well as the new insights on the aboveground feeding behavior by Diabrotica larvae reported in this thesis, will hopefully contribute to the development of novel and effective biocontrol strategies against Diabrotica pests.
  • Publication
    Accès libre
    The role of indole in maize-herbivore interactions
    Afin de se protéger contre les attaques d’insectes herbivores, les plantes ont développé de multiples moyens de défense, dont la libération de composés volatils induits par les herbivores (HIPVs). Ces composés volatils peuvent être utilisés par les ennemis naturels des herbivores tels que les prédateurs et les parasitoïdes. D’autre part, ils peuvent être exploités par les herbivores eux-mêmes pour localiser leurs plantes hôtes. Certains HIPVs peuvent aussi avertir les tissus non attaqués d’une même plante ou les plantes voisines d’un risque d’attaque. Le terme employé est “priming”. Les plantes averties pourront ainsi répondre plus rapidement et de manière plus efficace lorsque l’attaque se produira. Tandis que certains HIPVs ont été bien étudiés, le rôle de beaucoup d’autre reste à trouver. Par exemple, nous n’avons que peu de connaissances en ce qui concerne l’indole, un composé dominant du mélange de volatils émis par les plantes. Dans la thèse présentée ici, nous avons étudié le rôle de l’indole dans les défenses directes et indirectes du maïs grâce à l’utilisation de plantes mutantes dans la production d’indole et d’indole synthétique.
    Dans le premier chapitre, nous avons étudié le rôle de l’indole en tant que signal de défense. Nous fournissons la preuve que l’indole est essentiel pour le “priming” d’autres HIPVs au sein d’une même plante mais qu’il agit aussi comme signal de communication entre différentes plantes afin de les préparer à une possible attaque. Dans le deuxième chapitre, nous avons étudié l’effet de l’indole sur un insecte herbivore généraliste, Spodoptera littoralis. Nous démontrons que l’indole agit en tant de défense directe chez le maïs en repoussant les adultes et les chenilles de cette espèce et en réduisant la survie des chenille et le succès reproducteur des adultes. Dans le troisième chapitre, nous avons étudié l’importance de l’indole au niveau du troisième niveau trophique. Nous avons trouvé que malgré une attraction de certains parasitoïdes, une exposition à l’indole protège les chenilles de l’espèce S. littoralis en augmentant leur résistance contre les parasitoïdes. Dans le quatrième chapitre, nous avons étudié la spécificité des effets trouvés dans les deux chapitres précédents. Nous avons trouvé que ni le degré de spécialisation pour les plantes hôtes, ni l’origine phylogénétique, ni l’association avec des plantes produisantde l’indole ne déterminent la réponse des insectes herbivores et des ennemis naturels à l’indole. Nous concluons que le rôle de l’indole est dépendant des espèces.
    D’une manière générale, cette thèse contribue à une meilleure compréhension du rôle de l’indole dans les intéractions entre les plantes, les insectes herbivores et les ennemis naturels; elle confirme le rôle multiple des composés volatils dans les intéractions tri-trophiques., In order to counter herbivore attacks, plants have developed a multitude of defence strategies, including the release herbivore-induced plant volatiles (HIPVs). HIPVs can be used as foraging cues by natural enemies of the herbivores, including predators and parasitoids. In addition, they can also be exploited by herbivores themselves to localize their host plants. Some HIPVs even prime non-attacked plant tissues or neighbouring plants to respond faster and more strongly to subsequent attacks. Whereas some HIPVs have been well studied, the role of many others remains unclear. For instance, little is known about indole, a major constituent of the herbivore-induced volatile blend. In the present thesis, we studied the role of indole in direct and indirect defences in maize using indole deficient mutants and synthetic indole.
    In Chapter 1 we investigated the role of indole as a plant defence signal. We provide evidence that indole is essential for within-plant priming of other HIPVs and acts as a between-plant signal that primes non-attacked neighbours. In Chapter 2, we investigated the impact of indole on the generalist herbivore Spodoptera littoralis. We demonstrate that volatile indole acts as a direct defence in maize by repelling S. littoralis moths and caterpillars and by reducing the survival of early instar caterpillars and the reproductive output of adults. In Chapter 3, we studied the importance of indole on the third trophic level. We found that, although indole attracts certain parasitoids, indole-exposure protects S. littoralis caterpillars by increasing their resistance against parasitism. In Chapter 4, we investigated the specificity of the effects found in chapters 2 and 3. We found that neither the degree of host plant specialization nor the phylogenetic origin or the association with indole-producing plants determines the response of herbivores and natural enemies to the volatile, and that the role of indole is highly species-specific.
    Overall, this thesis contributes to a better understanding of the role of indole in interactions between plants, herbivore insects and natural enemies and highlights the diverse roles of HIPVs in tritrophic interactions.
  • Publication
    Accès libre
    Parasotoid communities and genetic structure: host plant does not matter
    (2008)
    Jourdie, Violaine
    ;
    Plant-insect interactions have long been studied and reveal intricate mechanisms. Plants are capable of defending themselves both directly by poisoning insect herbivores and indirectly by emitting volatile compounds that are used by the natural enemies to localize their host. In response, insects have evolved strategies to defeat plant defense mechanisms. Because insect pests are affected by plant signals, their natural enemies also bear these effects. As host plant can affect the physiology and behavior of parasitoids, it may also contribute to shaping their population genetic structure. This thesis mainly aimed to investigate the effects of host plant on the population genetics of parasitoids of the fall armyworm (FAW), Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), using microsatellite markers. The FAW is one of the New World’s most devastating pests and it attacks several economically important crops as well as grasses. It is commonly controlled by chemical insecticides. However, as it is attacked by numerous parasitoids species, and in order to limit the use of toxic pesticides, biological control is a safer alternative mean of management for this pest. The success of biological control relies on a good knowledge of the system, hence the importance of investigating population genetics and communities structure. This study focused on two primary parasitoids of S. frugiperda, Chelonus insularis Cresson (Hymenotera: Braconidae) and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae). It was conducted on two host plants, maize and sorghum, in Mexico where maize originated and where sorghum was introduced barely over a century ago. Due to difficulties encountered during sampling, whereby immature parasitoids did not complete their life cycle and therefore could not be morphologically identified, a technique was first developed, as a cheaper and faster alternative to sequencing, to molecularly assign parasitoid larvae to species. This simple but nonetheless efficient technique consists in amplifying DNA through polymerase chain reaction and digesting it with a cocktail of restriction endonucleases in order to obtain a species specific pattern when the digestion product is run on an agarose gel. With this technique, we could get an accurate estimation of which species were collected and in what proportions, which allowed to study parasitoid community structure. The study of population genetics first required the development and optimization of reliable molecular markers. Fifteen and 13 highly polymorphic microsatellites were respectively isolated from C. sonorensis and from C. insularis. These markers were used to investigate fine-scale genetic structure in Mexican populations. We could discern a regional effect, but host plant seems to play no role in shaping the populations genetic structure. High levels of admixture indicate that gene flow between populations is considerable. Finally, genetic structure was investigated at larger scale through a phylogeography using sequences of mitochondrial and nuclear marker genes. The lack of local structure was confirmed for both species. We found however evidence for North-South migration through a single colonization event in C. insularis, and a cryptic species distributed in Canada was discovered. Dispersal of these insects seems to be largely driven by wind as suggested by genetic similarities between geographically very distant individuals.
  • Publication
    Accès libre
    Evaluating the Induced-Odour Emission of a Bt Maize and its Attractiveness to Parasitic Wasps
    The current discussion on the safety of transgenic crops includes their effects on beneficial insects, such as parasitoids and predators of pest insects. One important plant trait to consider in this context is the emission of volatiles in response to herbivory. Natural enemies use the odours that result from these emissions as cues to locate their herbivorous prey and any significant change in these plant-provided signals may disrupt their search efficiency. There is a need for practical and reliable methods to evaluate transgenic crops for this and other important plant traits. Moreover, it is imperative that such evaluations are done in the context of variability for these traits among conventional genotypes of a crop. For maize and the induction of volatile emissions by caterpillar feeding this variability is known and realistic comparisons can therefore be made. Here we used a six-arm olfactometer that permits the simultaneous collection of volatiles emitted by multiple plants and testing of their attractiveness to insects. With this apparatus we measured the induced odour emissions of Bt maize (Bt11, N4640Bt) and its near-isogenic line (N4640) and the attractiveness of these odours to Cotesia marginiventris and Microplitis rufiventris, two important larval parasitoids of common lepidopteran pests. Both parasitoid species were strongly attracted to induced maize odour and neither wasp distinguished between the odours of the transgenic and the isogenic line. Also wasps that had previously experienced one of the odours during a successful oviposition divided their choices equally between the two odours. However, chemical analyses of collected odours revealed significant quantitative differences. The same 11 compounds dominated the blends of both genotypes, but the isogenic line released a larger amount of most of these. These differences may be due to altered resource allocation in the transgenic line, but it had no measurable effect on the wasps’ behaviour. All compounds identified here had been previously reported for maize and the differential quantities in which they were released fall well within the range of variability observed for other maize genotypes.
  • Publication
    Accès libre
    A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trapping
    (2004) ;
    Davison, A. C.
    ;
    Tamò, Cristina
    Behavioural assays to study insect attraction to specific odours are tedious, time consuming and often require large numbers of replications. Olfactometer and flight tunnel tests can usually only be conducted with one or two odour sources at a time. Moreover, chemical information on the odour sources has to be obtained in separate analytical studies. An olfactometer was developed in which six odours can be tested simultaneously for their relative attractiveness while during the assays, part of each test odour can be trapped for further analyses. The effectiveness of this six-arm olfactometer was tested by observing the responses of the solitary endoparasitoid Cotesia marginiventris (Cresson) to host-induced odours from young maize plants. For statistical analyses, we used log-linear models were adapted to account for overdispersion and possible positional biases. Female wasps responded extremely well in tests where they were offered a single odour source, as well as in tests with multiple choices. The responses of wasps released in groups were the same as those released individually and it was found that females did not attract or repel each other, but males preferred arms in which females had been released. Dose–response tests with varying numbers of plants or host larvae on plants revealed that the wasps responded in a dose-related manner, thus showing that the system is well suited to measure relative preference. The clear choices of the insects amongst six possibilities provided substantial statistical power. Gas chromatographic analyses of sampled air revealed clean and effective odour trapping, which largely facilitates the comparison of results from behavioural assays with the actual blends of volatiles that were emitted by the various odour sources. Advantages and disadvantages compared to other methods are discussed.
  • Publication
    Accès libre
    Occurrence and direct control potential of parasitoids and predators of the fall armyworm (Lepidoptera: Noctuidae) on maize in the subtropical lowlands of Mexico
    (2004)
    Hoballah, Maria Elena
    ;
    ;
    Bergvinson, David
    ;
    Savidan, Anita
    ;
    Tamò, Cristina
    ;
    1 Native natural enemies have the potential to control fall armyworm Spodoptera frugiperda (Smith) in tropical maize grown in Mexico, where this insect pest causes severe economic losses to farmers. It has been proposed that enhancing herbivore-induced volatile emissions in maize plants may help to increase the effectiveness of natural enemies, which use these volatiles to locate their prey. This will only be of immediate benefit to farmers if the activity of the natural enemies results in a direct reduction in herbivory. Here we report on field surveys for the most common natural enemies in a tropical maize-growing region in Mexico and the potential effects of these enemies on herbivory by fall armyworm.
    2 Caterpillars were collected in maize fields near Poza Rica in the state of Veracruz during January and February 1999, 2000 and 2001. Plants were either naturally infested by S. frugiperda, or artificially infested with laboratory-reared larvae. Ten species of parasitoids emerged from the collected larvae and eight species of predators that are known to feed on larvae and eggs were observed on the plants. Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) was the dominant parasitoid species, in 1999 and 2001.
    3 Of the nine larval parasitoids collected, six (all solitary) are known to reduce herbivory, whereas one causes the host to eat more (for two species this is not known). This implies that enhancing the effectiveness of solitary endoparasitoids may benefit subsistence farmers in developing countries by immediately reducing herbivory. The overall benefit for the plant resulting from parasitoid activity also has important implications for the evolutionary role of parasitoids in contributing to selection pressures that shape indirect defences in plants.
  • Publication
    Accès libre
    Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte)
    (2001)
    Gouinguené, Sandrine
    ;
    ;
    Maize plants respond to caterpillar feeding with the release of relatively large amounts of specific volatiles, which are known to serve as cues for parasitoids to locate their host. Little is known about the genetic variability in such herbivore-induced plant signals and about how the emissions in cultivated plants compare to those of their wild relatives. For this reason we compared the total quantity and the qualitative composition of the odour blend among eleven maize cultivars and five wild Zea (Poaceae) species (teosinte), as well as among the offspring of eight Zea mays mexicana plants from a single population. Young plants were induced to release volatiles by mechanically damaging the leaves and applying oral secretions of Spodoptera littoralis (Lepidoptera: Noctuidae) caterpillars to the wounded sites. Volatiles were collected 7 h after treatment and subsequently analysed by gas chromatography. The total amounts of volatiles released were significantly different among maize cultivars as well as among the teosintes. Moreover, striking differences were found in the composition of the induced odour blends. Caryophyllene, for instance, was released by some, but not all varieties and teosintes, and the ratios among monoterpenes and sesquiterpenes varied considerably. The offspring of different mother plants of the Z. m. mexicana population showed some variation in the total amounts that they released, but the composition of the odour blend was very consistent within the population of this teosinte species. We discuss the ecological significance of these findings in terms of specificity and reliability of induced plant signals for parasitoids.