Voici les éléments 1 - 10 sur 18
  • Publication
    Accès libre
  • Publication
    Accès libre
    Evolution of a local population of a multiple-strain pathogen in its vector
    Dans la plupart des maladies infectieuses, les infections sont causées par différentes souches de la même espèce de pathogène. Ces infections multiples ont des implications importantes pour l'écologie et l'évolution de ces agents pathogènes. La présence de plusieurs souches au même endroit peut en effet conduire à des interactions compétitives qui peuvent avoir un impact fort sur la structure de la population de pathogènes. Dans les maladies à transmission vectorielle, la plupart des recherches sur les interactions entre les souches d’un pathogène se sont concentrées sur l'hôte vertébré, et il y a un manque d'information sur ce qui se passe à l'intérieur du vecteur.
    La Borréliose de Lyme est la maladie vectorielle la plus courante dans l'hémisphère nord. Les agents pathogènes sont des bactéries spirochètes qui appartiennent au groupe Borrelia burgdorferi sensu lato et sont transmis entre hôtes vertébrés par les tiques dures du genre Ixodes. En Europe, les deux espèces les plus communes sont Borrelia afzelii et Borrelia garinii, qui sont spécialisés sur différentes classes d'hôtes réservoirs: les petits mammifères et les oiseaux. Chacune de ces deux espèces de Borrelia peut être subdivisées en différentes souches génétiquement distinctes. Les infections multiples causées par plusieurs souches sont communes à la fois chez l'hôte vertébré et chez la tique vectrice. Les souches sont souvent définies en utilisant le gène hautement polymorphe ospC, qui présente un motif de variation génétique particulier. En effet, un groupe majeur d’ospC est un groupe d'allèles d’ospC qui est plus de 8% différent dans sa séquence nucléotidique des autres groupes, alors que les allèles au sein d'un groupe majeur d’ospC sont moins de 2% différentes les unes des autres. Les espèces de Borrelia qui ont été étudiés à ce jour contiennent environ 20 différents groupes majeurs d’ospC.
    Dans la littérature, il existe actuellement deux explications pour le maintien du polymorphisme sur le gène ospC : la sélection fréquence-dépendante négative (SFDN) ou le polymorphisme de niches multiples (PNM). La SFDN prédit que les allèles rares ont une meilleure valeur adaptative que les plus communes et devraient donc envahir la population. La PNM prédit que les souches portant les différents groupes majeurs d’ospC sont spécialisées sur différentes espèces d'hôtes, et que c’est la richesse en espèces d’hôtes qui maintient la diversité d’ospC. Nous proposons une troisième explication qui est basée sur des modèles théoriques publiés par Gupta et ses collègues, sur la façon dont une forte immunité acquise croisée chez l'hôte vertébré peut structurer une communauté de multiples souches de pathogène. Cette théorie prédit qu’une forte sélection immunitaire contre des antigènes immuno-dominants obligera les souches pathogènes à s'organiser en un ensemble de sérotypes uniques qui minimisent l'immunité acquise croisée. Ces ensembles de souches distinctes au niveau antigénique peuvent rester stables pendant de longues périodes de temps et la fréquence de chaque souche dépend de sa valeur adaptative intrinsèque.
    Dans une première expérience, nous avons utilisé le séquençage 454 afin de caractériser les communautés de souches ospC de B. afzelii et B. garinii dans une population locale de nymphes Ixodes ricinus en quête, pendant une période de 11 ans. Nous avons également utilisé des estimations de la valeur adaptative intrinsèque de six souches de B. afzelii provenant d'une étude précédente d'infection expérimentale de souris de laboratoire. Nous n’avons pas trouvé d'allèles divergents intermédiairement (entre 2 et 8%) dans la population, ce qui suggère que l'immunité acquise croisée de l'hôte vertébré empêche l'invasion de la population par des souches intermédiaires. Chez les deux espèces de Borrelia la communauté des souches était stable pendant 11 ans. Nos estimations expérimentales de la valeur adaptative expliquent 63% de la variation dans les fréquences entre les différentes souches. Nos résultats étaient cohérents avec la théorie de Gupta et ses collègues qui explique comment une forte immunité acquise croisée peut structurer une communauté de multiples souches de pathogènes, mais pas avec les théories SFDN ou PNM.
    Dans la deuxième expérience, nous avons utilisé le séquençage 454 et des estimations de la charge en spirochète totale pour estimer la charge en spirochète spécifique de chaque souche ospC dans chaque tique. Nous avons analysé les nymphes en quête infectées soit par B. afzelii, soit par B. garinii, qui avaient été collectées pendant une période de 3 ans dans le même endroit que l'étude précédente.
    Nous avons constaté que les tiques ont une capacité de charge fixe entraînant une forte compétition entre les souches. Chez B. afzelii, les souches à la charge en spirochètes la plus élevée dans la tique étaient les souches les plus courantes dans la population de tiques. Chez B. garinii, les souches dont la charge en spirochètes était la moins affectée par la compétition avec d'autres souches étaient les souches les plus courantes dans la population de tiques. Chez les deux espèces de Borrelia, la charge en spirochètes dans la tique est un important trait d'histoire de vie. La compétition entre les souches de Borrelia dans la tique vectrice joue un rôle essentiel dans la structuration de la communauté de ce pathogène.
    Dans les deux études, nous avons constaté que les nymphes infectées par une seule espèce de Borrelia contenaient souvent des groupes majeurs d’ospC « exotiques » qui appartenaient à d'autres espèces de Borrelia. Ce résultat est surprenant et révèle l'importance de l'utilisation de méthodes de classification de novo pour analyser les données de séquençage à haut débit. Nous proposons deux explications à la présence de ces groupes majeurs d’ospC exotiques. Il peut y avoir des transferts horizontaux fréquents d’allèles d’ospC entre les différentes espèces de Borrelia, ou les co-infections avec B. afzelii et B. garinii sont d’un ordre de grandeur plus fréquent qu'on ne le pensait.
    Ce travail apporte un nouvel éclairage sur l'évolution des communautés de souches multiples de Borrelia et sur l'importance des interactions compétitives entre les souches pathogènes dans l’arthropode vecteur., Mixed-strain infections are the rule rather than the exception in most infectious diseases, and have important implication for the ecology and evolution of pathogens. The presence of multiple strains results in competitive interactions that can have a strong impact on the population structure of the pathogen. In vector-borne diseases, most of the research on competition between pathogen strains has focused on the vertebrate host, and there is a lack of information about what happens inside the arthropod vector.
    Lyme borreliosis is the most common vector-borne disease in the northern hemisphere. The causative agents are spirochete bacteria that belong to the group Borrelia burgdorferi sensu lato and that are transmitted among vertebrate host by hard ticks of the genus Ixodes. In Europe, the two most common species are Borrelia afzelii and Borrelia garinii, which are specialized on different classes of reservoir hosts: small mammals and birds, respectively. Each of these two Borrelia species can be further subdivided into genetically distinct strains. Mixed-strain infections are common in both the vertebrate host and the tick vector. Strains are often defined using the highly polymorphic ospC gene, which has a discrete pattern of genetic variation. A major ospC group is a cluster of ospC alleles that is more than 8% divergent in nucleotide sequence from other such clusters, whereas alleles within a major ospC group are less than 2% divergent from each other. The Borrelia species that have been studied to date contain about 20 different major ospC groups.
    In the literature, there are currently two explanations for the maintenance of the ospC polymorphism: negative frequency-dependent selection (NFDS) or multiple host-as-niche polymorphism (MNP). NFDS states that rare alleles have a fitness advantage over common ones and should therefore invade the population. MNP states that the strains carrying the different major ospC groups are specialized on different host species, and that it is the host species richness that maintains the ospC diversity. We propose a third explanation that is based on published theoretical models by Gupta and colleagues on how cross-reactive acquired immunity in the vertebrate host can drive the population structure of multiple-strain pathogens. This theory states that strong immune selection against immunodominant antigens will cause the pathogen strains to organize themselves into a set of unique serotypes that minimizes cross-reactive acquired immunity. These sets of antigenically distinct strains can remain stable over long periods of time and the frequency of each strain depends on its intrinsic fitness.
    In a first study, we used 454-sequencing to characterize the ospC strain structure of B. afzelii and B. garinii in a local population of questing Ixodes ricinus nymphs over a period of 11 years. We also used estimates of the intrinsic fitness of six strains of B. afzelii from a previous experimental infection study that used laboratory mice.
    We did not find any intermediately divergent alleles in the population, which suggested that cross-immunity from the vertebrate host prevents invasion by intermediate strains. In both Borrelia species the community of strains was stable over 11 years. Our laboratory estimates of fitness explained 63% of the variation in the frequencies between the different strains. Our results were consistent with the theory of Gupta and colleagues that explains how strong cross-reactive acquired immunity can structure the community of a multiple strain pathogen, but not with the NFDS or MNP theories.
    In the second study, we used 454 sequencing and qPCR estimates of the total spirochete load to estimate the ospC strain-specific spirochete load per tick. We analysed questing nymphs infected by either B. afzelii or B. garinii that had been captured over a period of 3 years in the same location as the previous study.
    We found that ticks had a fixed carrying capacity for spirochetes resulting in strong competition between strains. In B. afzelii, strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. In B. garinii, strains whose spirochete load was least affected by competition with other strains were the most common strains in the tick population. In both Borrelia species, the spirochete load in the tick is an important life history trait. Competition between Borrelia strains in the tick vector plays a critical role in the community structure of this multiple-strain, tick-borne pathogen.
    In both studies, we found that nymphs infected with a single Borrelia species often carried ‘exotic’ major ospC groups that belonged to other Borrelia species. This result was surprising and reveals the importance of using de novo clustering methods to analyze highthroughput sequencing data. We propose two explanations for the presence of these exotic major ospC groups. One explanation is frequent horizontal transfer of the ospC groups between the different Borrelia species. The other explanation is that co-infections with B. afzelii and B. garinii are an order of magnitude more common than previously suspected.
    This work provides new insights on the evolution of multiple-strain Borrelia populations and on the importance of competitive interactions between pathogen strains in the arthropod vector.
  • Publication
    Accès libre
    Cross-immunity and community structure of a multiple-strain pathogen in the tick vector
    Many vector-borne pathogens consist of multiple strains that circulate in both the vertebrate host and the arthropod vector. Characterization of the community of pathogen strains in the arthropod vector is therefore important for understanding the epidemiology of mixed vector-borne infections. Borrelia afzelii and B. garinii are two species of tick-borne bacteria that cause Lyme disease in humans. These two sympatric pathogens use the same tick, Ixodes ricinus, but are adapted to different classes of vertebrate hosts. Both Borrelia species consist of multiple strains that are classified using the highly polymorphic ospC gene. Vertebrate cross-immunity against the OspC antigen is predicted to structure the community of multiple-strain Borrelia pathogens. Borrelia isolates were cultured from field-collected I. ricinus ticks over a period spanning 11 years. The Borrelia species of each isolate was identified using a reverse line blot (RLB) assay. Deep sequencing was used to characterize the ospC communities of 190 B. afzelii isolates and 193 B. garinii isolates. Infections with multiple ospC strains were common in ticks, but vertebrate cross-immunity did not influence the strain structure in the tick vector. The pattern of genetic variation at the ospC locus suggested that vertebrate cross-immunity exerts strong selection against intermediately divergent ospC alleles. Deep sequencing found that more than 50% of our isolates contained exotic ospC alleles derived from other Borrelia species. Two alternative explanations for these exotic ospC alleles are cryptic coinfections that were not detected by the RLB assay or horizontal transfer of the ospC gene between Borrelia species.
  • Publication
    Accès libre
    Serological signature of tick-borne pathogens in Scandinavian brown bears over two decades
    (2015-7-28) ;
    Jones, Krista L.
    ;
    Evans, Alina L.
    ;
    ; ;
    Lienhard, Reto
    ;
    ;
    Arnemo, Jon M.
    ;
    Swenson, Jon E.
    ;
    Background: Anthropogenic disturbances are changing the geographic distribution of ticks and tick-borne diseases. Over the last few decades, the tick Ixodes ricinus has expanded its range and abundance considerably in northern Europe. Concurrently, the incidence of tick-borne diseases, such as Lyme borreliosis and tick-borne encephalitis, has increased in the human populations of the Scandinavian countries. Methods: Wildlife populations can serve as sentinels for changes in the distribution of tick-borne diseases. We used serum samples from a long-term study on the Scandinavian brown bear, Ursus arctos, and standard immunological methods to test whether exposure to Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, and tick-borne encephalitis virus (TBEV) had increased over time. Bears had been sampled over a period of 18 years (1995-2012) from a southern area, where Ixodes ricinus ticks are present, and a northern area where ticks are uncommon or absent. Results: Bears had high levels of IgG antibodies against B. burgdorferi sensu lato but not TBEV. Bears at the southern area had higher values of anti-Borrelia IgG antibodies than bears at the northern area. Over the duration of the study, the value of anti-Borrelia IgG antibodies increased in the southern area but not the northern area. Anti-Borrelia IgG antibodies increased with the age of the bear but declined in the oldest age classes. Conclusions: Our study is consistent with the view that ticks and tick-borne pathogens are expanding their abundance and prevalence in Scandinavia. Long-term serological monitoring of large mammals can provide insight into how anthropogenic disturbances are changing the distribution of ticks and tick-borne diseases.
  • Publication
    Accès libre
    Effects of acquired immunity on co-feeding and systemic transmission of the Lyme disease bacterium, "Borrelia afzelii"
    La borréliose de Lyme est une zoonose transmise par les tiques. Les bactéries qui en sont la cause, des spirochètes, se trouvent principalement chez des hôtes réservoirs sauvages tels que des rongeurs ou des petits oiseaux terrricoles. Borrelia afzelii est l’un des pathogènes responsables de la borréliose de Lyme les plus importants en Europe et est transmis par la tique du mouton Ixodes ricinus. Pendant le repas sanguin de la tique, le pathogène peut infecter l’hôte. La bactérie change l’expression des protéines de surfaces externes (Osp) pendant l’infection pour pouvoir s’adapter efficacement à l’hôte ou à la tique. L’une de ces protéines, OspC, joue un rôle important dans le développement de l’infection chez l’hôte.
    Pendant le développement de l’infection systémique dans l’hôte vertébré, ce dernier va développer une immunité acquise (ex : anticorps) contre diverses protéines des spirochètes incluant OspC. Une des stratégies développée par le pathogène pour contourner les anticorps anti-OspC d’un hôte déjà infecté par une autre souche de Borrelia est de porter un allèle différent pour ospC. Nous pouvons ainsi distinguer des souches de B. afzelii en fonction de l’ospC dont elles disposent.
    Borrelia afzelii dispose de deux modes de transmission: la transmission systémique (de l’hôte à la tique) et la transmission par co-feeding (de la tique à la tique). La transmission systémique requiert le développement d’une infection très répandue, multi-systémique, dans l’hôte vertébré dans le but de faciliter la transmission à de nouvelles tiques. Pendant la transmission par co-feeding, l’hôte crée simplement un pont qui va amener la tique infectée et la tique non-infectée à proximité l’une de l’autre. La transmission par co-feeding peut ainsi être une stratégie pour les spirochètes d’éviter le système immunitaire acquis et d’infecter de nouvelles tiques naïves.
    Pour tester cette hypothèse, nous avons immunisé des souris de laboratoire avec l’une des deux protéines recombinantes OspC (rOspC) qui correspondent à deux souches différentes de B. afzelii : A3 et A10. Les anticorps contre un antigène OspC particulier bloquent la souche ciblée (homologue) mais pas la souche non-ciblée (hétérologue). L’immunisation réduit aussi drastiquement l’efficacité de la transmission par co-feeding. Chez les souris non-immunisées (contrôles) et les homologues, la transmission par co-feeding a atteint une prévalence de 51,6 % tandis que pour les souris homologues, ce taux n’a atteint que 3.3 %, correspondant à une baisse de 15,6 fois.
    Nous avons recherché les effets de l’immunité acquise croisée en comparant les phénotypes d’infection entre les hétérologues et les souris contrôles. Les souris hétérologues ont une première expérience avec le ‘mauvais’ antigène OspC, et ces souris sont donc suspectées de répondre plus efficacement à l’infection avec B. afzelii que les souris contrôles naïves. Nous avons trouvé que l’immunité croisée avait un effet sur la charge en spirochètes des nymphes qui se sont nourries à l’état de larve sur les souris 1 mois après l’infection. La charge en spirochète moyenne dans les nymphes était 2,1 fois plus haute dans le groupe contrôle que dans le groupe hétérologue.
    Il y avait aussi un grand effet du mode de transmission sur la charge en spirochètes des nymphes. La charge en spirochètes était en moyenne 4 fois plus basse dans les tiques de co-feeding que dans les tiques infectées par transmission systémique. Finalement, nous avons vu un effet important du vieillissement de la tique sur la charge en spirochètes des nymphes. Les nymphes qui ont été tuées 4 mois après la mue de la larve à la nymphe avaient une charge en spirochètes qui étaient 6,3 à 15,3 fois plus basse que les nymphes qui ont été tuées 3 mois plus tôt. Cette baisse de la charge en spirochètes à mesure que l’infection vieillit dans la nymphe pourrait avoir un effet sur la fitness de B. afzelii.
    Cette thèse de doctorat a démontré que la transmission par co-feeding ne permet pas à B. afzelii d’échapper aux anticorps spécifiques anti-OspC et que la réponse immunitaire de l’hôte avait un effet négatif sur la fitness de Borrelia. Ce travail fournit de nouvelles informations sur les mécanismes de la transmission par co-feeding, sur les interactions hôte-parasite d’un pathogène responsable de la maladie de Lyme, et sur les effets de l’immunité acquise d’un hôte vertébré sur la transmission du pathogène., Lyme borreliosis is a tick-borne zoonotic disease and the causative spirochete bacteria are predominantly found in wildlife reservoirs such as rodents and ground-dwelling birds. Borrelia afzelii is one of the most common Lyme borreliosis pathogens in Europe, and is transmitted by the sheep tick Ixodes ricinus. During the tick blood meal, the pathogen can infect the host. The bacteria change the expression of their outer surface proteins (Osp) during the infection to adapt efficiently to the vertebrate host or the tick vector. One of these proteins, OspC, plays an important role in the development of host infection.
    The systemically infected vertebrate host develops an acquired immune response (e.g. antibodies) against various spirochete proteins including OspC. One of the strategies developed by the pathogen to avoid the OspC-specific antibodies of a host already infected by a given Borrelia strain is to carry a different ospC allele. The ospC gene is therefore a useful genetic marker for classifying B. afzelii into different strains.
    Borrelia afzelii has two modes of transmission: systemic (host-to-tick) transmission and co-feeding (tick-to-tick) transmission. Systemic transmission requires the development of a widespread, multi-system infection in the vertebrate host to facilitate transmission to new vector ticks. During co-feeding transmission, the host merely forms the bridge that brings the infected and uninfected ticks in close proximity to each other. Co-feeding transmission could therefore be a strategy for the spirochete to avoid the host immune system and to infect new naïve ticks.
    To test this hypothesis, we immunized lab mice with one of two recombinant OspC (rOspC) proteins that belonged to two different strains of B. afzelii: A3 and A10. Antibodies against a particular OspC antigen blocked infection of the targeted (homologous) strain but not the non-targeted (heterologous) strain. Immunization also drastically reduced the efficacy of co-feeding transmission. In non-immunized or heterologous mice, the co-feeding transmission rate was 51.6 % whereas in homologous mice, this rate was 3.3%, corresponding to a 15.6-fold decrease.
    We investigated the effects of cross-reactive acquired immunity by comparing the infection phenotypes between heterologous and control mice. The heterologous mice had previous experience with the heterologous OspC antigen, and we therefore predicted that these mice would respond more efficiently to infection with B. afzelii than the completely naive control mice. We found that cross-immunity had an effect on the spirochete load in the nymphal ticks that had fed on the mice one month post-infection. The mean nymphal spirochete load was 2.1 times higher in the control group than in the heterologous group.
    There was also a large effect of the mode of transmission on the nymphal spirochete load. The spirochete load was on average 6 times lower in co-feeding ticks than in ticks infected via systemic transmission. Finally, there was an important effect of nymphal ageing on the spirochete load inside the nymph. Nymphs that were examined four months after the larva-to-nymph molt had a spirochete load that was 6.3 to 15.3 times lower than nymphs that were examined 3 months earlier. This decrease in spirochete load as the infection ages inside the nymphal tick could have an effect on the fitness of B. afzelii.
    This PhD thesis demonstrated that co-feeding transmission does not allow B. afzelii to escape the OspC-specific antibodies and that host acquired immunity had a negative effect on the fitness of Borrelia spirochetes. This work provides new information on the mechanism of co-feeding transmission, on the host-parasite interactions of an important Lyme disease pathogen, and on the effect of acquired immunity in the vertebrate host on pathogen transmission.
  • Publication
    Accès libre
    Borrelia burgdorferi Has Minimal Impact on the Lyme Disease Reservoir Host Peromyscus leucopus
    (2011)
    Schwanz, Lisa E.
    ;
    ;
    Brisson, Dustin
    ;
    Ostfeld, Richard S.
    The epidemiology of vector-borne zoonotic diseases is determined by encounter rates between vectors and hosts. Alterations to the behavior of reservoir hosts caused by the infectious agent have the potential to dramatically alter disease transmission and human risk. We examined the effect of Borrelia burgdorferi, the etiological agent of Lyme disease, on one of its most important reservoir hosts, the white-footed mouse, Peromyscus leucopus. We mimic natural infections in mice using the vector (Black-legged ticks, Ixodes scapularis) and examine the immunological and behavioral responses of mouse hosts. Despite producing antibodies against B. burgdorferi, infected mice did not have elevated white blood cells compared with uninfected mice. In addition, infected and uninfected mice did not differ in their wheel-running activity. Our results suggest that infection with the spirochete B. burgdorferi has little impact on the field activity of white-footed mice. Lyme disease transmission appears to be uncomplicated by pathogen-altered behavior of this reservoir host.
  • Publication
    Accès libre
    Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs, Rana pipiens
    (2010) ;
    Adama, Doug
    ;
    Houston, Barb
    ;
    Govindarajulu, Purnima
    ;
    Robinson, John

    Background
    Emerging infectious diseases threaten naïve host populations with extinction. Chytridiomycosis, an emerging infectious disease of amphibians, is caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd) and has been linked to global declines in amphibians.
    Results
    We monitored the prevalence of Bd for four years in the Northern leopard frog, Rana pipiens, which is critically imperiled in British Columbia (BC), Canada. The prevalence of Bd initially increased and then remained constant over the last three years of the study. Young of the year emerging from breeding ponds in summer were rarely infected with Bd. Some individuals cleared their Bd infections and the return rate between infected and uninfected individuals was not significantly different.
    Conclusions
    The BC population of R. pipiens appears to have evolved a level of resistance that allows it to co-exist with Bd. However, this small population of R. pipiens remains vulnerable to extinction.
  • Publication
    Accès libre
    Rodent malaria-resistant strains of the mosquito, Anopheles gambiae, have slower population growth than -susceptible strains
    (2009) ;
    Anholt, Bradley R.
    ;
    Taylor, Pam J.
    ;
    Hurd, Hilary
    Background
    Trade-offs between anti-parasite defence mechanisms and other life history traits limit the evolution of host resistance to parasites and have important implications for understanding diseases such as malaria. Mosquitoes have not evolved complete resistance to malaria parasites and one hypothesis is that anti-malaria defence mechanisms are costly.
    Results
    We used matrix population models to compare the population growth rates among lines of Anopheles gambiae that had been selected for resistance or high susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The population growth rate of the resistant line was significantly lower than that of the highly susceptible and the unselected control lines, regardless of whether mosquitoes were infected with Plasmodium or not. The lower population growth of malaria-resistant mosquitoes was caused by reduced post blood-feeding survival of females and poor egg hatching.
    Conclusions
    With respect to eradicating malaria, the strategy of releasing Plasmodium-resistant Anopheles mosquitoes is unlikely to be successful if the costs of Plasmodium-resistance in the field are as great as the ones measured in this study. High densities of malaria-resistant mosquitoes would have to be maintained by continuous release from captive breeding facilities.
  • Publication
    Accès libre
    Comparison of male reproductive success in malaria-refractory and susceptible strains of Anopheles gambiae
    (2008) ; ;
    Hurd, Hilary
    Background
    In female mosquitoes that transmit malaria, the benefits of being refractory to the Plasmodium parasite are balanced by the immunity costs in the absence of infection. Male mosquitoes, however, gain no advantage from being refractory to blood-transmitted parasites, so that any costs associated with an enhanced immune system in the males limit the evolution of female refractoriness and has practical implications for the release of transgenic males.
    Methods
    Aspects of the male cost of carrying Plasmodium-refractory genes were estimated by comparing the males' immune response and reproductive success among strains of Anopheles gambiae that had been selected for refractoriness or extreme susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The refractory males had a stronger melanization response than males from the susceptible line. Four traits were used as correlates of a male's reproductive success: the proportion of females that were inseminated by a fixed number of males in a cage within a fixed time frame, the proportion of females with motile sperm in their spermathecae, the proportion of ovipositing females, and the mean number of eggs per batch.
    Results
    Although there were significant differences among groups of males in sperm motility and oviposition success, these differences in male reproductive success were not associated with the refractory or susceptible male genotypes. Contrary to expectation, females mated to early emerging refractory males laid significantly more eggs per batch than females mated to later emerging susceptible males. Sperm motility and oviposition success were strongly correlated suggesting that variation in sperm motility influences female oviposition and ultimately male reproductive success.
    Conclusions
    An increased melanization response in male A. gambiae does not diminish male reproductive success under the experimental protocol used in this study. That refractory males induced ovipositing females to lay more eggs than susceptible males is an interesting result for any strategy considering the release of transgenic males. That sperm motility influences female oviposition is also important for the release of transgenic males.
  • Publication
    Accès libre
    No maternal effects after stimulation of the melanization response in the yellow fever mosquito Aedes aegypti
    (2008) ;
    Lambrechts, Louis
    ;
    The costs and benefits of activating the immune system can reach across generations. Thus, in vertebrates and in several invertebrates, stimulating the immune system of a female can enhance immunity of her offspring or decrease offspring fitness. We evaluated the potential maternally transmitted costs and benefits of the melanization response, an innate immune response of insects that helps to protect mosquitoes from malaria parasites. We manipulated the maternal melanization response of the yellow fever mosquito Aedes aegypti by inoculating female mosquitoes with negatively charged sephadex beads or with immunologically inert glass beads; a control group was not inoculated. In the next generation, we assayed the melanization response and measured three other life-history traits: survival up to emergence, the age at emergence, and body size (estimated as wing length). We found no evidence of fitness costs or benefits for the offspring. A retrospective power analysis found that our experiment would have detected an effect size that is three times smaller than the maternal immune priming effects that have been reported in the literature. We did find a strong correlation between offspring wing length and melanization response. Overall, our findings indicate that trans-generational immune priming in invertebrates cannot be generalized, and that it may depend on the species, the immune challenge, and the environmental conditions.