Voici les éléments 1 - 8 sur 8
  • Publication
    Accès libre
    Effects of decomposing cadavers on soil nematode communities over a one-year period
    (2016-12-1) ; ; ; ;
    Steel, Hanne
    ;
    Neilson, Roy
    ;
    Griffiths, Bryan S.
    ;
    Amendt, Jens
    ;
    In terrestrial ecosystems decomposing cadavers act as resource patches affecting nutrient cycling and soil communities, but the effects on soil communities are not well known. In this study we investigated nematode community response to decomposing pig cadavers (Sus scrofa) over a one-year period. As nematodes play key roles in soil food webs and are known to respond to disturbances and nutrient enrichment, we hypothesised that they would respond to decomposing cadavers and that this response would change over time. We compared the temporal patterns of nematode density and community structure under pig cadavers, either placed directly on the ground or hung 1 m aboveground (for effects of cadaveric fluids only), with two controls, i.e., bare soil and bags filled with soil placed on the ground (fake pigs e for microclimatic effects only). In the control and fake pig treatments nematode densities, community patterns and maturity indices did not change significantly. In contrast, density increased significantly underneath the ground and hanging pigs two weeks after the beginning of the experiment, and nematode family richness, Simpson diversity and maturity index were sgnificantly reduced in the cadaver treatments. Most nematode families responded negatively to cadavers with the notable exceptions of Rhabditidae, Neodiplogasteridae and Diplogasteroididae. The latter two were found exclusively underneath the decomposing cadavers and are promising bioindicators of vertebrate cadaver decomposition. Even though diversity, density and communities were recovering after one year, the impact of cadavers was still significant for the maturity index. These contrasting patterns illustrate how decomposing cadavers contribute to increasing local biodiversity and suggest that soil nematodes could be used as a tool to document the presence of a decomposing cadaver, or to estimate the time elapsed since death (post-mortem interval). Patterns should, however, be compared in different settings and seasons before such a tool can be validated.
  • Publication
    Métadonnées seulement
    Microbial eukaryote communities from Patagonian-Antarctic gradient of lakes evidence robust biogeographical patterns
    (2016-9-30)
    Schiaffino, M. Romina
    ;
    ; ;
    Balagué, Vanessa
    ;
    ; ;
    Massana, Ramon
    ;
    Izaguirre, Irina
    Microbial eukaryotes play important roles in aquatic ecosystem functioning. Unravelling their distribution patterns and biogeography provides important baseline information to infer the underlying mechanisms that regulate the biodiversity and complexity of eco- systems. We studied the distribution patterns and factors driving diversity gradients in microeukaryote communities (total, abundant, uncommon and rare community composition) along a latitudinal gradient of lakes distributed from Argentinean Patagonia to Maritime Antarctica using both denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (Illumina HiSeq). DGGE and abundant Illumina operational taxonomic units (OTUs) showed both decreasing richness with latitude and significant differences between Patagonian and Antarctic lakes communities. In contrast, total richness did not change significantly across the latitudinal gradient, although evenness and diversity indices were significantly higher in Patagonian lakes. Beta-diversity was characterized by a high species turnover, influenced by both environmental and geographical descriptors, although this pattern faded in the rare community. Our results suggest the co-existence of a ‘core biosphere’ containing reduced number of abundant/dominant OTUs on which classical ecological rules apply, together with a much larger seedbank of rare OTUs driven by stochastic and reduced dispersal processes. These findings shed new light on the biogeographical patterns and forces structuring inland microeukaryote composition across broad spatial scales.
  • Publication
    Accès libre
    Mycamoeba gemmipara nov. gen., nov. sp., the First Cultured Member of the Environmental Dermamoebidae Clade LKM74 and its Unusual Life Cycle
    Since the first environmental DNA surveys, entire groups of sequences called “environmental clades” did not have any cultured representative. LKM74 is an amoebozoan clade affiliated to Dermamoebidae, whose presence is pervasively reported in soil and freshwater. We obtained an isolate from soil that we assigned to LKM74 by molecular phylogeny, close related to freshwater clones. We described Mycamoeba gemmipara based on observations made with light- and transmission electron microscopy. It is an extremely small amoeba with typical lingulate shape. Unlike other Dermamoebidae, it lacked ornamentation on its cell membrane, and condensed chromatin formed characteristic patterns in the nucleus. M. gemmipara displayed a unique life cycle: trophozoites formed walled coccoid stages which grew through successive buddings and developed into branched structures holding cysts. These structures, measuring hundreds of micrometres, are built as the exclusive product of osmotrophic feeding. In order to demonstrate that M. gemmipara is a genuine soil inhabitant, we screened its presence in an environmental soil DNA diversity survey performed on an experimental setup where pig cadavers were left to decompose in soils in order to follow changes in eukaryotic communities. M. gemmipara was present in all samples, although related reads were uncommon underneath the cadaver.
  • Publication
    Métadonnées seulement
    High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat
    (2016-4-21) ; ;
    Steciow, Mónica M.
    ;
    ;
    Noelia, Paredes
    ;
    ;
    Tomasz, Oszako
    ;
    Oomycete diversity has been generally underestimated, despite their ecological and economic importance. Surveying unexplored natural ecosystems with up-to-date molecular diversity tools can reveal the existence of unsuspected organisms. Here, we have explored the molecular diversity of five microhabitats located in five different oligotrophic peat bogs in the Jura Mountains using a high-throughput sequencing approach (Illumina HiSeq 2500). We found a total of 34 different phylotypes distributed in all major oomycete clades, and comprising sequences affiliated to both well-known phylotypes and members of undescribed, basal clades. Parasitic species, including obligate forms were well-represented, and phylotypes related to highly damaging invasive pathogens (Aphanomyces astaci: X1100 and Saprolegnia parasitica: X1602) were retrieved. Microhabitats differed significantly in their community composition, and many phylotypes were strongly affiliated to free water habitats (pools). Our approach proved effective in screening oomycete diversity in the studied habitat, and could be applied systematically to other environments and other fungal and fungal-like groups.
  • Publication
    Métadonnées seulement
    Response of forest soil euglyphid testate amoebae (Rhizaria: Cercozoa) to pig cadavers assessed by high-throughput sequencing
    Decomposing cadavers modify the soil environment, but the effect on soil organisms and especially on soil protists is still poorly documented. We conducted a 35-month experiment in a deciduous forest where soil samples were taken under pig cadavers, control plots and fake pigs (bags of similar volume as the pigs). We extracted total soil DNA, amplified the SSU ribosomal RNA (rRNA) gene V9 region and sequenced it by Illumina technology and analysed the data for euglyphid testate amoebae (Rhizaria: Euglyphida), a common group of protozoa known to respond to micro- environmental changes. We found 51 euglyphid operational taxonomic units (OTUs), 45 of which did not match any known sequence. Most OTUs decreased in abundance underneath cadavers between days 0 and 309, but some responded positively after a time lag. We sequenced the full-length SSU rRNA gene of two common OTUs that responded positively to cadavers; a phylogenetic analysis showed that they did not belong to any known euglyphid family. This study confirmed the existence of an unknown diversity of euglyphids and that they react to cadavers. Results suggest that metabarcoding of soil euglyphids could be used as a forensic tool to estimate the post-mortem interval (PMI) particularly for long-term (>2 months) PMI, for which no reliable tool exists.
  • Publication
    Métadonnées seulement
    Planktonic eukaryote molecular diversity: discrimination of minerotrophic and ombrotrophic peatland pools in Tierra del Fuego (Argentina)
    (2015-5-1) ; ;
    González Garraza, Gabriela
    ;
    ;
    Quiroga, Maria Victoria
    ;
    Mataloni, Gabriela
    We investigated the composition of the smallest size fraction (<3µm) of eukaryotic plankton communities of five pools located in the Rancho Hambre peat bog in Argentinean Tierra del Fuego with an IlluminaHiSeq massive sequencing approach applied to the v9 region of the eukaryotic SSU rRNA gene. Communities were generally dominated by chrysophytes, with a good representation of Perkinsea and Cercozoa clade NC-10. A community composition analysis performed using GUniFraC separated minerotrophic and ombrotrophic sites, reflecting perfectly the classification of the sites based on environmental data. However, this separation disappeared when more weight was given to abundant phylotypes, suggesting that subordinate phylotypes were responsible for site discrimination. The 5% best indicators for, respectively, minerotrophic and ombrotrophic environments were searched using an IndVal analysis. Among these, autotrophic taxa were more common in minerotrophic environments, whereas mixotrophic taxa represented best ombrotrophic water bodies. However, the ecological traits of many taxa have still not been determined, and still needs to be investigated for a better understanding of freshwater systems ecology.
  • Publication
    Métadonnées seulement
    Can soil testate amoebae be used for estimating the time since death? A field experiment in a deciduous forest
    Estimation of the post-mortem interval (PMI, the time interval between death and recovery of a body) can be crucial in solving criminal cases. Today minimum PMI calculations rely mainly on medical and entomological evidence. However, beyond 4-6 weeks even entomological methods become less accurate. Thus additional tools are needed. Cadaveric fluids released by decomposing cadavers modify the soil environment and thus impact soil organisms, which may thus be used to estimate the PMI. Although the response of bacteria or fungi to the presence of a corpse has been studied, to the best of our knowledge nothing is known about other soil organisms. Testate amoebae, a group of shelled protozoa, are sensitive bioindicators of soil physico-chemical and micro-climatic conditions and are therefore good potential PMI indicators. We investigated the response of testate amoebae to three decomposing pig cadavers, and compared the pattern to two controls each, bare soils and fake cadavers, in a beach-oak forest near Neuchatel, Switzerland. Forest litter samples collected in the three treatments over 10 months were analysed by microscopy. The pig treatment significantly impacted the testate amoeba community: after 22 and 33 days no living amoeba remained underneath the pig cadavers. Communities subsequently recovered but 10 months after the beginning of the experiment recovery was not complete. The fake cadavers also influenced the testate amoeba communities by altering the soil microclimate during a dry hot period, but less than the cadavers. These results confirm the sensitivity of soil testate amoebae to micro-climatic conditions and show that they respond fast to the presence of cadavers -and that this effect although decreasing over time lasts for months, possibly several years. This study therefore confirms that soil protozoa could potentially be useful as forensic indicators, especially in cases with a longer PMI. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
  • Publication
    Accès libre
    Can soil testate amoebae be used for estimating the time since death?: A field experiment in a deciduous forest
    Estimation of the post-mortem interval (PMI, the time interval between death and recovery of a body) can be crucial in solving criminal cases. Today minimum PMI calculations rely mainly on medical and entomological evidence. However, beyond 4–6 weeks even entomological methods become less accurate. Thus additional tools are needed. Cadaveric fluids released by decomposing cadavers modify the soil environment and thus impact soil organisms, which may thus be used to estimate the PMI. Although the response of bacteria or fungi to the presence of a corpse has been studied, to the best of our knowledge nothing is known about other soil organisms. Testate amoebae, a group of shelled protozoa, are sensitive bioindicators of soil physico-chemical and micro-climatic conditions and are therefore good potential PMI indicators. We investigated the response of testate amoebae to three decomposing pig cadavers, and compared the pattern to two controls each, bare soils and fake cadavers, in a beach-oak forest near Neuchâtel, Switzerland. Forest litter samples collected in the three treatments over 10 months were analysed by microscopy. The pig treatment significantly impacted the testate amoeba community: after 22 and 33 days no living amoeba remained underneath the pig cadavers. Communities subsequently recovered but 10 months after the beginning of the experiment recovery was not complete. The fake cadavers also influenced the testate amoeba communities by altering the soil microclimate during a dry hot period, but less than the cadavers. These results confirm the sensitivity of soil testate amoebae to micro-climatic conditions and show that they respond fast to the presence of cadavers – and that this effect although decreasing over time lasts for months, possibly several years. This study therefore confirms that soil protozoa could potentially be useful as forensic indicators, especially in cases with a longer PMI.