Options
Turlings, Ted
Nom
Turlings, Ted
Affiliation principale
Fonction
Professeur.e ordinaire
Email
ted.turlings@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 9 sur 9
- PublicationAccès libreField evidence for the role of plant volatiles induced by caterpillar-derived elicitors in the prey location behavior of predatory social wasps1. One assumed function of herbivore-induced plant volatiles (HIPVs) is to attract natural enemies of the inducing herbivores. Field evidence for this is scarce and often indirect. Also, the assumption that elicitors in insect oral secretions that trigger the volatile emissions are essential for attraction of natural enemies has not yet been demonstrated under field conditions. 2. After observing social wasps removing caterpillars from maize plants in an agricultural field, we hypothesized that these wasps use HIPVs to locate their prey. To test this, we conducted an experiment that simultaneously explored the importance of caterpillar oral secretions in the interaction. 3. We found that Spodoptera caterpillars placed on mechanically damaged plants treated with oral secretion were more likely to be attacked by wasps compared to caterpillars on plants that were only mechanically wounded. Both of the the latter treatments were considerably more attractive than plants that were only treated with oral secretion or left untreated. Subsequent analyses of headspace volatiles confirmed differences in emitted volatiles that likely account for the differential predation events across the treatments. 4. These findings highlight the importance of HIPVs in prey location by social wasps and provide evidence for the role that elicitors play in inducing attractive odor blends.
- PublicationAccès libreTritrophic interactions : possible host-plants effects on the resistance of "Diabrotica" pests to natural enemies(2021)
; La sous-tribu Diabroticina de chrysomèles comprend de nombreux ravageurs importants des cultures agricoles et horticoles dans les Amériques, tels que le maïs et le concombre. L'une des espèces les plus dévastatrices, la chrysomèle des racines de maïs Diabrotica virgifera virgifera (WCR), est également un ravageur envahissant en Europe. Pour ce ravageur et les espèces de Diabrotica apparentées, le développement d'une lutte biologique efficace est nécessaire de toute urgence, et pour cela, des connaissances supplémentaires sur les interactions tri-trophiques entre Diabrotica, leurs plantes hôtes et leurs ennemis naturels sont nécessaires. Dans cette thèse, j’ai exploré les adaptations des ravageurs Diabrotica à leurs plantes hôtes avec leurs composés défensifs, et évalué l’éventuelle protection que les larves de Diabrotica obtiennent après l'ingestion de ces métabolites secondaires des plantes. Au cours d'échantillonnages sur le terrain au Mexique, j’ai observé que le parasitisme des coléoptères Diabroticina adultes par des parasitoïdes est minime (Chapitre I), mais j’ai constaté que les larves peuvent être infectées avec succès par des nématodes entomopathogènes (EPN) adaptés (Chapitre II). Des isolats d'EPN hautement infectieux collectés dans des champs de maïs mexicains pourraient être des candidats prometteurs pour contrôler WCR en Europe. Ces isolats et/ou leurs bactéries endosymbiotiques pourraient être adaptés à l'arsenal de défense déployé par les larves de WCR, qui comprend la séquestration des benzoxazinoïdes du maïs, mais des stratégies inconnues supplémentaires semblent également être impliquées. Les larves du généraliste Diabrotica balteata ne séquestrent pas des benzoxazinoïdes après s'être nourries des plantes de maïs et semblent moins capables de résister aux infections à EPN que les WCR. Cependant, elles sont capables de séquestrer des cucurbitacines après avoir mangé des plantes de concombre (Chapitre III). J'ai fourni des preuves solides que les larves de D. balteata peuvent transformer et séquestrer les cucurbitacines des plants de concombre. Cependant, je n'ai trouvé aucune preuve que les cucurbitacines séquestrées puissent protéger les larves de l'infection par des EPN, ni de l'attaque par des insectes prédateurs, des champignons entomopathogènes ou des bactéries. La performance des larves n'a pas non plus été affectée positivement par la teneur en cucurbitacines des tissus végétaux qu'elles ont consommées, d'où la signification adaptative de la séquestration de cucurbitacines reste à élucider. Curieusement, j’ai observé que les larves de D. balteata se nourrissent activement de tissus au-dessus de la surface, tels que tiges, cotylédons et feuilles, ce qui m’a incité à étudier si ce comportement procure des avantages et si d'autres espèces de Diabrotica ont un comportement similaire (Chapitre IV). Les larves de D. balteata, D. undecimpunctata et D. virgifera, normalement décrites comme larves de racines, se sont toutes avérées capables de se nourrir de feuilles ainsi que de racines de différentes plantes agricoles contenant des métabolites secondaires distincts. Pourtant, leurs performances et leur sensibilité à l'infection par des EPN n’ont pas été affectées différemment par le tissu que les larves avaient consommées. Ensemble, ces résultats contribuent à une meilleure compréhension de l'impact des métabolites secondaires des plante hôte ingérés par des insectes herbivores sur le troisième niveau trophique. Le succès des espèces de Diabrotica en tant que ravageurs des cultures semble être lié à leurs caractéristiques uniques pour survivre dans un environnement imprévisible en se nourrissant de différentes plantes et tissus, faisant face avec succès à une grande variété de composés de défense des plantes, qui dans certains cas peuvent fournir une protection contre les ennemis naturels. J’émet l'hypothèse que les larves de Diabrotica se nourrissant de maïs sont capables de détoxifier les benzoxazinoïdes, et discute de l'origine et de l'importance adaptative de la séquestration de cucurbitacines par les espèces de Diabrotica, qui ne semblerait pas liée à la défense contre les ennemis naturels. Enfin, les isolats d'EPN obtenus, ainsi que les nouvelles connaissances sur le comportement alimentaire des larves de Diabrotica rapportées dans cette thèse, contribueront, espérons-le, au développement de stratégies de biocontrôle nouvelles et efficaces contre les ravageurs du genre Diabrotica. ABSTRACT The subtribe Diabroticina of chrysomelid beetles includes many important pests of extensive and horticultural crops in the Americas, such as maize and cucumber. One of the most devastating species, the western corn rootworm Diabrotica virgifera virgifera (WCR), is also an invasive pest in Europe. For this and related Diabrotica pests, the development of efficient biological control is urgently needed, and for this further knowledge on tritrophic interactions of Diabrotica, their host plants and their natural enemies is required. In this thesis, I explored the adaptations of Diabrotica pests to their host plants and the plants’ defensive compounds, and evaluated the possible protection that Diabrotica larvae derive from ingesting these plant secondary metabolites. During field surveys in Mexico, I observed that parasitism of adult Diabroticina beetles by parasitoids is minimal (Chapter I), but found that the larvae can be successfully infected by adapted entomopathogenic nematodes (EPN) (Chapter II). Highly-infective EPN isolates collected in Mexican maize fields could be promising candidates to control the maizespecialist WCR in Europe. These isolates and/or their endosymbiotic bacteria may have adapted to the defense arsenal deployed by WCR larvae, which includes the sequestration of maize benzoxazinoids, but additional unknown strategies seem to be also involved. Larvae of the generalist Diabrotica balteata do not sequester benzoxazinoids after feeding on maize and seem to be less able to resist EPN infections than WCR. However, they are able to sequester cucurbitacins after feeding on cucumber plants (Chapter III). I provided strong evidence that D. balteata larvae can transformation and sequester cucurbitacins from cucumber plants. However, I found no evidence that the sequestered cucurbitacins can protect the larvae from infection by EPN, nor from the attack by insect predators, entomopathogenic fungi or bacteria. Larval performance was also not positively affected by cucurbitacin contents in plant tissues that they consumed, hence the adaptive significance of cucurbitacin sequestration remains to be unraveled. Surprisingly, the D. balteata larvae were observed to actively forage on aboveground tissues, which prompted us to study whether this behavior provides any benefits and if other Diabrotica species do the same (Chapter IV). Larvae of D. balteata, D. undecimpunctata and D. virgifera were all found to be able to feed on leaves as well as roots from different agricultural plants that contain distinct secondary metabolites. Yet, their performance and the susceptibility against EPN infection were not differentially impacted by the tissue that the larvae had fed on. Taken together, these results contribute to a better understanding of the impact of host plant secondary metabolites ingested by insect herbivores on the third trophic level. The success of Diabrotica species as crop pests seems to be related to their unique traits to survive in an unpredictable environment by feeding on different plants and tissues, successfully coping with a wide variety of plant defense chemicals, which in some cases may provide protection against natural enemies. I hypothesize that maize- feeding Diabrotica larvae may be able to detoxify benzoxazinoids, and discuss the origin and adaptive significance of cucurbitacin sequestration by Diabrotica species, which appears not to be related to defense against natural enemies. Finally, the isolates of EPN obtained, as well as the new insights on the aboveground feeding behavior by Diabrotica larvae reported in this thesis, will hopefully contribute to the development of novel and effective biocontrol strategies against Diabrotica pests. - PublicationAccès libreThe mate-seeking strategies of four braconid parasitoids (Hymenoptera: Braconidae)(2017)
;Xu, Hao,Les guêpes parasitiques sont couramment utilisées comme agents de contrôle biologique. Afin d’optimiser leur usage en agriculture, il est essentiel de déterminer comment ces animaux trouvent leurs hôtes et se reproduisent. Il y a environ 50 000 espèces de guêpes parasitoïdes décrites à ce jour, mais moins de 30 espèces ont été investiguées en terme d’usage de phéromones. Durant la réalisation de cette thèse, j’ai utilisé une combinaison de bio-essais, analyses chimiques et de mesures électrophysiologiques afin d’étudier la communication sexuelle chez quatre espèces de parasitoïdes braconides : Cotesia glomerata (L.), Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday). Les femelles vierges des deux espèces de Cotesia produisent des phéromones pour attirer des mâles conspécifiques et celles-ci ne sont pas attractives pour les autres espèces. Chez M. rufiventris, les mâles vierges sont attractifs pour les femelles, là où, les individus aussi bien mâles que femelles de M. mediator, montrent une attraction pour les deux sexes. Les phéromones sexuelles de l’espèce grégaire C. glomerata ainsi que celles de de l’espèce solitaire du même genre, C. marginiventris, comprennent à la fois des composés spécifiques et d’autres qui ne le sont pas. Ces composés non-spécifiques (tels que l’heptanal et le nonanal) sont produits par toutes les parties du corps (têtes, thorax et abdomen), et sont donc probablement des constituants des lipides cuticulaires (CLs). Certains de ces composés non-spécifiques font, quant à eux, partie des phéromones sexuelles des deux espèces de Cotesia, mais ne sont effectives qu’en combinaison avec d’autres composés de leurs phéromones sexuelles. La spécificité phéromonale des deux espèces de Cotesia semble due à deux composés, produits en faibles quantités, et qui n’ont pas encore été identifiés actuellement. De manière assez intéressante, les lipides cuticulaires, qui sont initialement et vraisemblablement impliqués dans la barrière cuticulaire limitant la dessiccation et les infections enthomopathogéniques, semblent avoir développé une fonction phéromonale, liée à la biologie des deux espèces de Cotesia. L’heptanal est un anti-aphrodisiaque chez l’espèce grégaire C. glomerata qui sert apparemment à réduire la compétition d’accouplement entre individus d’une même fratrie à la naissance. Cependant, chez l’espèce solitaire C. marginiventris, ce même composé se trouve être une phéromone augmentant de manière synergique l’attractivité des autres composés phéromonaux sexuels. À ma connaissance, cette thèse est la première étude démontrant que les lipides cuticulaires peuvent évoluer en différentes fonctions phéromonales. Le sex-ratio (pourcentage de mâles) de l’espèce de parasitoïdes grégaires C. glomerata varie entre 25 et 67%, selon la façon dont les femelles perçoivent la qualité et la taille du patch d’hôtes. Pour cette espèce, se reproduire sur les patchs où les individus sont nés (les hôtes dont les guêpes ont émergé) est probablement fortement influencé par les phéromones. En effet, les mâles émergent normalement un peu avant leurs sœurs et ceux qui émergent par la suite sont attirés par l’émergence de femelles vierges via les phéromones sexuelles mais repoussés par les autres mâles et les femelles s’étant déjà accouplées, qui produisent l’heptanal anti-aphrodisiaque. En utilisant une combinaison de phéromones attractives et anti-aphrodisiaque, la proportion de mâles s’accouplant au site d’émergence varie proportionnellement au sex-ratio (i. e. le niveau de compétition entre mâles). Étant donné que les phéromones des quatre espèces de parasitoïdes braconides fonctionnent sur de courtes distances, la localisation des partenaires peut devenir beaucoup plus compliquée pour les espèces solitaires ainsi que pour les individus des espèces grégaires de C. glomerata qui quittent leurs patchs natifs pour se reproduire sur un autre patch. Fait intéressant, les parasitoïdes vierges des quatre espèces étudiées se sont révélées particulièrement attirées par les volatils de plantes induits par l’herbivorie (HIPVs), suggérant que les plantes endommagées par des hôtes servent de lieu de rendez-vous pour les individus cherchant à se reproduire, en plus d’être des sites où les femelles peuvent trouver des hôtes pour leurs descendances. Des stratégies semblables ont été observées pour des insectes herbivores et des pollinisateurs avec des volatils végétaux stimulant la production (ou sécrétion) de phéromones par ces insectes, et/ou d’augmenter l’attractivité des phéromones de manière synergique pour les individus à la recherche d’un partenaire. En tenant compte des propriétés chimiques (volatilité) de phéromones d’insectes typiques et celles des volatils végétaux, ainsi que sur une récente théorie et les expériences y attenant concernant la compréhension des panaches formés par les odeurs, j’émets l’hypothèse que les phéromones d’insectes et les volatils végétaux ont une fonction complémentaire dans la localisation des lieux de reproduction. Je formule également le postulat que pour beaucoup d’insectes, l’usage des volatils végétaux a évolué dans l’optique d’améliorer, non seulement la location des sources de nourriture (ou d’hôte), mais aussi celles de partenaires., Parasitic wasps are widely used as biological control agents. To optimize their applications in agriculture, we need to understand how they locate hosts and mate. Parasitic wasps have about 50,000 described species, but less than 30 species have so far been tested in terms of their use of pheromones. In this thesis, I used a combination of bioassays, chemical analyses, and electrophysiological measurements to study the sexual communication in four braconid parasitoids: Cotesia glomerata (L.), Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday). Virgin females of both Cotesia species release sex pheromones to attract conspecific males, which are not attractive to the other species. In M. rufiventris, virgin males are attractive to females, whereas males and females of M. mediator exhibit attraction to both sexes. The sex pheromones of the gregarious parasitoid C. glomerata and the congeneric solitary species C. marginiventris comprise both specific components and non-specific components. Some non-specific compounds (such as heptanal and nonanal) are produced by all body parts (heads, thoraxes and abdomens), indicating they are probably constituents of cuticular lipids (CLs). Some of these non-specific compounds are components of sex pheromones of the two Cotesia species, but only work synergistically with other components of their sex pheromone. The pheromone specificity of two Cotesia species appears to be determined by two specific compounds, which are released only in very small amounts, and which we, so far, failed to identify. Interestingly, the nonspecific CLs, which originally are probably part of the cuticular barrier to avoid desiccation and infection by entomopathgens, may have evolved pheromonal functions linked to the specific biology of the two Cotesia species. Heptanal is an anti-aphrodisiac in the gregarious species C. glomerata, probably reducing natal mate competition among sibling males, but in the solitary species C. marginiventris, heptanal is a sex pheromone constituent that synergistically enhances the attractiveness of other sex pheromone components. To my knowledge, this thesis presents the first study showing that CLs can evolve into distinct pheromonal functions. The sex ratio (percentage of males) of the gregarious parasitoid C. glomerata ranges from 25-67% depending on how ovipositing females perceive the quality and size of a host patch. In this species, mating on natal patches (the hosts from which the wasps emerge) is probably strongly influenced by pheromones: males normally emerge a bit earlier than sibling females, and males that emerge after that are arrested by emerging virgin females with sex pheromones, but repelled by other males and mated females, which produce the anti-aphrodisiac heptanal. By using a combination of attractive sex pheromones and the anti-aphrodisiac, the proportion of males mating on the emergence sites probably varies according to the sex ratio (i.e. the level of male-male competition). Since the pheromones of the four braconid parasitoid species seem to work in a relatively short range, locating mate may be much more of a challenge for the studied solitary parasitoid species, as well as for those individuals of gregarious C. glomerata that leave their natal patch and try to find mates in other patches. Interestingly, virgin parasitoids of both sexes of all four braconid parasitoids were found to be strongly attracted by herbivore-induced plant volatiles (HIPVs), implying that host-damaged plants probably serve as rendezvous sites for mate-seeking individuals, in addition to being sites where the females find hosts for their offspring. Similar strategies have been reported for herbivorous insects and pollinators: host plant volatiles stimulate these insects to produce (or release) pheromones, and/or synergistically increased the attractiveness of pheromones to mate-seeking conspecifics. Based on the chemical properties (volatility) of typical insect pheromones and those of relevant plant volatiles, as well as recent theoretical and experimental advances in our understanding of the odour plumes that they form, I propose that insect pheromones and plant volatiles serve complimentary functions in mate location. I postulate that in many insects the use of plant volatiles has evolved into an efficient foraging strategy to not only find food (or host), but also mates. - PublicationAccès libreThe role of indole in maize-herbivore interactions(2014)
; Afin de se protéger contre les attaques d’insectes herbivores, les plantes ont développé de multiples moyens de défense, dont la libération de composés volatils induits par les herbivores (HIPVs). Ces composés volatils peuvent être utilisés par les ennemis naturels des herbivores tels que les prédateurs et les parasitoïdes. D’autre part, ils peuvent être exploités par les herbivores eux-mêmes pour localiser leurs plantes hôtes. Certains HIPVs peuvent aussi avertir les tissus non attaqués d’une même plante ou les plantes voisines d’un risque d’attaque. Le terme employé est “priming”. Les plantes averties pourront ainsi répondre plus rapidement et de manière plus efficace lorsque l’attaque se produira. Tandis que certains HIPVs ont été bien étudiés, le rôle de beaucoup d’autre reste à trouver. Par exemple, nous n’avons que peu de connaissances en ce qui concerne l’indole, un composé dominant du mélange de volatils émis par les plantes. Dans la thèse présentée ici, nous avons étudié le rôle de l’indole dans les défenses directes et indirectes du maïs grâce à l’utilisation de plantes mutantes dans la production d’indole et d’indole synthétique.
Dans le premier chapitre, nous avons étudié le rôle de l’indole en tant que signal de défense. Nous fournissons la preuve que l’indole est essentiel pour le “priming” d’autres HIPVs au sein d’une même plante mais qu’il agit aussi comme signal de communication entre différentes plantes afin de les préparer à une possible attaque. Dans le deuxième chapitre, nous avons étudié l’effet de l’indole sur un insecte herbivore généraliste, Spodoptera littoralis. Nous démontrons que l’indole agit en tant de défense directe chez le maïs en repoussant les adultes et les chenilles de cette espèce et en réduisant la survie des chenille et le succès reproducteur des adultes. Dans le troisième chapitre, nous avons étudié l’importance de l’indole au niveau du troisième niveau trophique. Nous avons trouvé que malgré une attraction de certains parasitoïdes, une exposition à l’indole protège les chenilles de l’espèce S. littoralis en augmentant leur résistance contre les parasitoïdes. Dans le quatrième chapitre, nous avons étudié la spécificité des effets trouvés dans les deux chapitres précédents. Nous avons trouvé que ni le degré de spécialisation pour les plantes hôtes, ni l’origine phylogénétique, ni l’association avec des plantes produisantde l’indole ne déterminent la réponse des insectes herbivores et des ennemis naturels à l’indole. Nous concluons que le rôle de l’indole est dépendant des espèces.
D’une manière générale, cette thèse contribue à une meilleure compréhension du rôle de l’indole dans les intéractions entre les plantes, les insectes herbivores et les ennemis naturels; elle confirme le rôle multiple des composés volatils dans les intéractions tri-trophiques., In order to counter herbivore attacks, plants have developed a multitude of defence strategies, including the release herbivore-induced plant volatiles (HIPVs). HIPVs can be used as foraging cues by natural enemies of the herbivores, including predators and parasitoids. In addition, they can also be exploited by herbivores themselves to localize their host plants. Some HIPVs even prime non-attacked plant tissues or neighbouring plants to respond faster and more strongly to subsequent attacks. Whereas some HIPVs have been well studied, the role of many others remains unclear. For instance, little is known about indole, a major constituent of the herbivore-induced volatile blend. In the present thesis, we studied the role of indole in direct and indirect defences in maize using indole deficient mutants and synthetic indole.
In Chapter 1 we investigated the role of indole as a plant defence signal. We provide evidence that indole is essential for within-plant priming of other HIPVs and acts as a between-plant signal that primes non-attacked neighbours. In Chapter 2, we investigated the impact of indole on the generalist herbivore Spodoptera littoralis. We demonstrate that volatile indole acts as a direct defence in maize by repelling S. littoralis moths and caterpillars and by reducing the survival of early instar caterpillars and the reproductive output of adults. In Chapter 3, we studied the importance of indole on the third trophic level. We found that, although indole attracts certain parasitoids, indole-exposure protects S. littoralis caterpillars by increasing their resistance against parasitism. In Chapter 4, we investigated the specificity of the effects found in chapters 2 and 3. We found that neither the degree of host plant specialization nor the phylogenetic origin or the association with indole-producing plants determines the response of herbivores and natural enemies to the volatile, and that the role of indole is highly species-specific.
Overall, this thesis contributes to a better understanding of the role of indole in interactions between plants, herbivore insects and natural enemies and highlights the diverse roles of HIPVs in tritrophic interactions. - PublicationAccès libreSimultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies(2007)
; Herbivore-damaged plants emit volatile organic compounds that attract natural enemies of the herbivores. This form of indirect plant defence occurs aboveground as well as belowground, but it remains unclear how simultaneous feeding by different herbivores attacking leaves and roots may affect the production of the respective defence signals. We employed a setup that combines trapping of volatile organic signals and simultaneous measurements of the attractiveness of these signals to above and belowground natural enemies. Young maize plants were infested with either the foliar herbivore Spodoptera littoralis, the root herbivore Diabrotica virgifera virgifera, or with both these important pest insects. The parasitic wasp Cotesia marginiventris and the entomopathogenic nematode Heterorhabditis megidis were strongly attracted if their respective host was feeding on a plant, but this attraction was significantly reduced if both herbivores were on a plant. The emission of the principal root attractant was indeed reduced due to double infestation, but this was not evident for the leaf volatiles. The parasitoid showed an ability to learn the differences in odour emissions and increased its response to the odour of a doubly infested plant after experiencing this odour during an encounter with hosts. This first study to measure effects of belowground herbivory on aboveground tritrophic signalling and vice-versa reemphasizes the important role of plants in bridging interactions between spatially distinct components of the ecosystem. - PublicationAccès libreEvaluating the Induced-Odour Emission of a Bt Maize and its Attractiveness to Parasitic Wasps(2005)
; ; ; The current discussion on the safety of transgenic crops includes their effects on beneficial insects, such as parasitoids and predators of pest insects. One important plant trait to consider in this context is the emission of volatiles in response to herbivory. Natural enemies use the odours that result from these emissions as cues to locate their herbivorous prey and any significant change in these plant-provided signals may disrupt their search efficiency. There is a need for practical and reliable methods to evaluate transgenic crops for this and other important plant traits. Moreover, it is imperative that such evaluations are done in the context of variability for these traits among conventional genotypes of a crop. For maize and the induction of volatile emissions by caterpillar feeding this variability is known and realistic comparisons can therefore be made. Here we used a six-arm olfactometer that permits the simultaneous collection of volatiles emitted by multiple plants and testing of their attractiveness to insects. With this apparatus we measured the induced odour emissions of Bt maize (Bt11, N4640Bt) and its near-isogenic line (N4640) and the attractiveness of these odours to Cotesia marginiventris and Microplitis rufiventris, two important larval parasitoids of common lepidopteran pests. Both parasitoid species were strongly attracted to induced maize odour and neither wasp distinguished between the odours of the transgenic and the isogenic line. Also wasps that had previously experienced one of the odours during a successful oviposition divided their choices equally between the two odours. However, chemical analyses of collected odours revealed significant quantitative differences. The same 11 compounds dominated the blends of both genotypes, but the isogenic line released a larger amount of most of these. These differences may be due to altered resource allocation in the transgenic line, but it had no measurable effect on the wasps’ behaviour. All compounds identified here had been previously reported for maize and the differential quantities in which they were released fall well within the range of variability observed for other maize genotypes. - PublicationAccès libreIn Situ Modification of Herbivore-Induced Plant Odors : A Novel Approach to Study the Attractiveness of Volatile Organic Compounds to Parasitic Wasps(2004)
;D'Alessandro, MarcoMany parasitic wasps (parasitoids) exploit volatile organic compounds (VOCs) emitted by herbivore-infested plants in order to locate their hosts, but it remains largely unknown which specific compounds within the volatile blends elicit the attractiveness to parasitoids. One way of studying the importance of specific VOCs is to test the attractiveness of odor blends from which certain compounds have been emitted. We used this approach by testing the attraction of naive and experienced females of the two parasitoids Cotesia marginiventris and Microplitis rufiventris to partially altered volatile blends of maize seedlings (Zea mays var. Delprim) infested with Spodoptera littoralis larvae. Adsorbing filter tubes containing carbotrap-C or silica were installed in a four-arm olfactometer between the odor source vessels and the arms of the olfactometer. The blends breaking through were tested for chemical composition and attractiveness to the wasps. Carbotrap-C adsorbed most of the sesquiterpenes, but the breakthrough blend remained attractive to naive C. marginiventris females. Silica adsorbed only some of the more polar VOCs, but this essentially eliminated all attractiveness to naive C. marginiventris, implying that among the adsorbed compounds there are some that play key roles in the attraction. Unlike C. marginiventris, M. rufiventris was still attracted to the latter blend, showing that parasitoids with a comparable biology may employ different strategies in their use of plant-provided cues to locate hosts. Results from similar experiments with modified odor blends of caterpillar-infested cowpea (Vigna unguiculata) indicate that key VOCs in different plant species vary greatly in quality and/or quantity. Finally, experienced wasps were more strongly attracted to a specific blend after they perceived the blend while ovipositing in a host. Considering the high number of distinct adsorbing materials available today, this in situ modification of complex volatile blends provides a new and promising approach pinpointing on key attractants within these blends. Advantages and disadvantages compared to other approaches are discussed. - PublicationAccès libreVariability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte)(2001)
;Gouinguené, Sandrine; Maize plants respond to caterpillar feeding with the release of relatively large amounts of specific volatiles, which are known to serve as cues for parasitoids to locate their host. Little is known about the genetic variability in such herbivore-induced plant signals and about how the emissions in cultivated plants compare to those of their wild relatives. For this reason we compared the total quantity and the qualitative composition of the odour blend among eleven maize cultivars and five wild Zea (Poaceae) species (teosinte), as well as among the offspring of eight Zea mays mexicana plants from a single population. Young plants were induced to release volatiles by mechanically damaging the leaves and applying oral secretions of Spodoptera littoralis (Lepidoptera: Noctuidae) caterpillars to the wounded sites. Volatiles were collected 7 h after treatment and subsequently analysed by gas chromatography. The total amounts of volatiles released were significantly different among maize cultivars as well as among the teosintes. Moreover, striking differences were found in the composition of the induced odour blends. Caryophyllene, for instance, was released by some, but not all varieties and teosintes, and the ratios among monoterpenes and sesquiterpenes varied considerably. The offspring of different mother plants of the Z. m. mexicana population showed some variation in the total amounts that they released, but the composition of the odour blend was very consistent within the population of this teosinte species. We discuss the ecological significance of these findings in terms of specificity and reliability of induced plant signals for parasitoids. - PublicationAccès libreCombined use of herbivore-induced plant volatiles and sex pheromones for mate location in braconid parasitoids
;Xu, Hao ;Desurmont, Gaylord; ;Zhou, Guoxin; ;Henryk, LukaHerbivore-induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odour preferences of four braconid wasps – the gregarious parasitoid Cotesia glomerata (L.) and the solitary parasitoids Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday) – were studied in olfactometers. Each species showed attraction to pheromones but in somewhat different ways.Males of the two Cotesia species were attracted to virgin females, whereas females of M. rufiventriswere attracted to virginmales. Male and female M.mediator exhibited attraction to both sexes. Importantly, female and male wasps of all four species were strongly attracted by HIPVs, independent of mating status. In most cases, male wasps were also attracted to intact plants. The wasps preferred the combination of HIPVs and pheromones over plant odours alone, except M.mediator, which appears to mainly use HIPVs for mate location. We discuss the ecological contexts in which the combined use of pheromones and HIPVs by parasitoids can be expected. To our knowledge, this is the first study to show that braconid parasitoids use HIPVs and pheromones in combination to locate mates.