Voici les éléments 1 - 10 sur 18
  • Publication
    Métadonnées seulement
    The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests
    (2014)
    Sobhy, Islam S.
    ;
    ;
    Lou, Yonggen
    ;
    An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to 'boost their vigour, resilience and performance'. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach.
  • Publication
    Métadonnées seulement
    Phylogeography of Chelonus insularis (Hymenoptera: Braconidae) and Campoletis sonorensis (Hymenoptera: Ichneumonidae), two primary neotropical parasitoids of the fall armyworm (Lepidoptera: Noctuidae)
    (2010-9)
    Jourdie, V.
    ;
    Virla, E.
    ;
    Murillo, H.
    ;
    Bento, J. M. S.
    ;
    ;
    Alvarez, N.
    In a previous study, we observed no spatial genetic structure in Mexican populations of the parasitoids Chelonus insularis Cresson (Hymenoptera: Braconidae) and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae) by using microsatellite markers In the current study, we Investigated whether for these important parasitoids of the fall armyworm (Lepidoptera: Noctuidae) there is any genetic structure at a larger scale Insects of both species were collected across the American continent and their phylogeography was Investigated using both nuclear and mitochondria] markers Our results suggest an ancient north-south migration of C insularis, whereas no clear pattern] could be determined for C sonorensis. Nonetheless, the resulting topology indicated the existence of a cryptic taxon within this later species. a few Canadian specimens determined as C. sonorensis branch outside a clack composed of the Argentinean Chelonus grioti Blanchard, the Brazilian Chelonus flavicincta Ashmead, and the rest of the C sonorensis individuals The individuals revealing the cryptic taxon were collected from Thichoplusia in (Hubner) (Lepidoptera. Noctuidae) on tomato (Lycopersicon spp) and may represent a biotype that has adapted to the early season phenology of its host. Overall, the loosely defined spatial genetic structure previously shown at a local fine scale also was found at the larger scale, for both species Dispersal of these insects may be partly driven by wind as suggested by genetic similarities between Individuals coming from very distant locations.
  • Publication
    Accès libre
    Isolation and characterization of polymorphic microsatellite loci in two primary parasitoids of the noctuid Spodoptera frugiperda: Chelonus insularis and Campoletis sonorensis (Hymenoptera)
    (2008)
    Jourdie, Violaine
    ;
    Alvarez, Nadir
    ;
    ;
    Franck, Pierre
    Fifteen and 13 microsatellite loci were isolated, respectively, from Campoletis sonorensis Cameron and from Chelonus insularis Cresson. These two parasitic Hymenoptera are primary parasitoids of Lepidoptera in North, Central and South America, including the important agricultural pest Spodoptera frugiperda. Allelic diversity and heterozygosity were quantified in samples from Mexico. Each locus was polymorphic, with the number of alleles ranging from two to 16 in C. sonorensis and from four to 18 in C. insularis. Heterozygosity ranged from 0.088 to 0.403 in C. sonorensis and from 0.106 to 0.458 in C. insularis.
  • Publication
    Accès libre
    Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies
    Herbivore-damaged plants emit volatile organic compounds that attract natural enemies of the herbivores. This form of indirect plant defence occurs aboveground as well as belowground, but it remains unclear how simultaneous feeding by different herbivores attacking leaves and roots may affect the production of the respective defence signals. We employed a setup that combines trapping of volatile organic signals and simultaneous measurements of the attractiveness of these signals to above and belowground natural enemies. Young maize plants were infested with either the foliar herbivore Spodoptera littoralis, the root herbivore Diabrotica virgifera virgifera, or with both these important pest insects. The parasitic wasp Cotesia marginiventris and the entomopathogenic nematode Heterorhabditis megidis were strongly attracted if their respective host was feeding on a plant, but this attraction was significantly reduced if both herbivores were on a plant. The emission of the principal root attractant was indeed reduced due to double infestation, but this was not evident for the leaf volatiles. The parasitoid showed an ability to learn the differences in odour emissions and increased its response to the odour of a doubly infested plant after experiencing this odour during an encounter with hosts. This first study to measure effects of belowground herbivory on aboveground tritrophic signalling and vice-versa reemphasizes the important role of plants in bridging interactions between spatially distinct components of the ecosystem.
  • Publication
    Métadonnées seulement
    The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps
    (2006)
    D'Alessandro, Marco
    ;
    ;
    Triponez, Yann
    ;
    After herbivore attack, plants release a plethora of different volatile organic compounds (VOCs), which results in odor blends that are attractive to predators and parasitoids of these herbivores. VOCs in the odor blends emitted by maize plants (Zea mays) infested by lepidopteran larvae are well characterized. They are derived from at least three different biochemical pathways, but the relative importance of each pathway for the production of VOCs that attract parasitic wasps is unknown. Here, we studied the importance of shikimic acid derived VOCs for the attraction of females of the parasitoids Cotesia marginiventris and Microplitis rufiventris. By incubating caterpillar-infested maize plants in glyphosate, an inhibitor of the 5-enolpyruvylshikimate-3-phospate (EPSP) synthase, we obtained induced odor blends with only minute amounts of shikimic acid derived VOCs. In olfactometer bioassays, the inhibited plants were as attractive to naive C. marginiventris females as control plants that released normal amounts of shikimic acid derived VOCs, whereas naive M. rufiventris females preferred inhibited plants to control plants. By adding back synthetic indole, the quantitatively most important shikimic acid derived VOC in induced maize odors, to inhibited plants, we showed that indole had no effect on the attraction of C. marginiventris and that M. rufiventris preferred blends without synthetic indole. Exposing C. marginiventris females either to odor blends of inhibited or control plants during oviposition experiences shifted their preference in subsequent olfactometer tests in favor of the experienced odor. Further learning experiments with synthetic indole showed that C. marginiventris can learn to respond to this compound, but that this does not affect its choices between natural induced blends with or without indole. We hypothesize that for naive wasps the attractiveness of an herbivore-induced odor blend is reduced due to masking by nonattractive compounds, and that during oviposition experiences in the presence of complex odor blends, parasitoids strongly associate some compounds, whereas others are largely ignored.
  • Publication
    Métadonnées seulement
    Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids
    (2006)
    Rostas, Michael
    ;
    Ton, Jurriaan
    ;
    ;
    Plants attacked by insects release volatile compounds that attract the herbivores' natural enemies. This so-called indirect defense is plastic and may be affected by an array of biotic and abiotic factors. We investigated the effect of fungal infection as a biotic stress agent on the emission of herbivore-induced volatiles and the possible consequences for the attraction of two parasitoid species. Maize seedlings that were simultaneously attacked by the fungus Setosphaeria turcica and larvae of Spodoptera littoralis emitted a blend of volatiles that was qualitatively similar to the blend emitted by maize that was damaged by only the herbivore, but there was a clear quantitative difference. When simultaneously challenged by fungus and herbivore, the maize plants emitted in total 47% less of the volatiles. Emissions of green leaf volatiles were unaffected. In a six-arm olfactometer, the parasitoids Cotesia marginiventris and Microplitis rufiventris responded equally well to odors of herbivore-damaged and fungus- and herbivore-damaged maize plants. Healthy and fungus-infected plants were not attractive. An additional experiment showed that the performance of S. littoralis caterpillars was not affected by the presence of the pathogen, nor was there an effect on larvae of M. rufiventris developing inside the caterpillars. Our results confirm previous indications that naive wasps may respond primarily to the green leaf volatiles.
  • Publication
    Accès libre
    A comparison of naïve and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odours
    (2006)
    Tamò, Cristina
    ;
    Ricard, Ingrid
    ;
    ;
    Davison, A. C.
    ;
    Many parasitic wasps that exploit herbivores as their hosts make use of herbivoreinduced plant odours to locate their victims and these wasps often exhibit an ability to learn to associate specific plant-produced odours with the presence of hosts. This associative learning is expected to allow generalist parasitoids to focus on cues that are most reliably associated with current host presence, but evidence supporting this hypothesis is ambiguous. Using a six-arm olfactometer we compared the responses of three generalist larval endoparasitoids, Cotesia marginiventris (Hymenoptera: Braconidae), Microplitis rufiventris (Hymenoptera: Braconidae) and Campoletis sonorensis (Hymenoptera: Ichneumonidae), to the induced odours of three plant species: maize (Zea mays), cowpea (Vigna unguiculata), and cotton (Gossypium hirsutum). We tested the responses of naïve females as well as of females that were first conditioned by parasitising host larvae feeding on one of the plant species. Despite similarities in biology and host range the three wasp species responded entirely differently. Naïve C. marginiventris and C. sonorensis chose equally among the induced odours of the three plants, whereas naïve M. rufiventris, which may have a somewhat more restricted host range, tended to prefer the odour of maize. After conditioning, most C. marginiventris females chose the odour of the plant species that they had experienced, but conditioned M. rufiventris showed an even stronger preference for maize odours, independently of the plant they had experienced. Cotesia sonorensis did not show any change in its preference after conditioning. We speculate that its extremely broad host range allows C. sonorensis females to use fixed responses to cues commonly associated with plants damaged by Lepidoptera. These results imply that different generalist parasitoids may employ different foraging strategies and that associative learning is not necessarily part of it.
  • Publication
    Accès libre
    Odour-mediated long-range avoidance of interspecific competition by a solitary endoparasitoid : a time-saving foraging strategy
    (2006)
    Tamò, Cristina
    ;
    Roelfstra, Lise-Lore
    ;
    Guillaume, Suzanne
    ;
    1. In studies on optimal foraging strategies, long-range decisions in the pursuit of resource are rarely considered. This is also the case for sympatric parasitoids, which may be confronted with the decision to accept or reject host larvae that are already parasitized by a competing species. They can be expected to reject already parasitized hosts if it is likely that they will lose the resulting intrinsic competition. However, examples of such interspecific host discrimination are rare.
    2. We propose that parasitoids that are not egg-limited should reject inferior hosts only if it saves them time, and that this will be achieved mainly when the parasitoids are able to detect competitors from a distance. We tested this hypothesis using the sympatric parasitoids Cotesia marginiventris (Cresson) and Campoletis sonorensis (Cameron).
    3.C. sonorensis was found to be the superior intrinsic competitor but, upon contact with a host larva, both wasps readily accepted hosts that had already been parasitized by the other species. However, in an olfactometer experiment, C. marginiventris females were found to strongly avoid the odour of their superior competitor.
    4. These results are in accordance with a time optimization scenario, whereby the inferior competitor accepts competition if it costs only an egg, but avoids competition if it may save time that can be allocated to the search for more profitable hosts.
    5. Models on host discrimination strategies in parasitoids had not yet considered discrimination from a distance. Long-range foraging decisions can also be expected for other organisms that have to choose between resources of varying suitability and profitability.
  • Publication
    Métadonnées seulement
    In situ modification of herbivore-induced plant odors: A novel approach to study the attractiveness of volatile organic compounds to parasitic wasps
    (2005)
    D'Alessandro, Marco
    ;
    Many parasitic wasps (parasitoids) exploit volatile organic compounds (VOCs) emitted by herbivore-infested plants in order to locate their hosts, but it remains largely unknown which specific compounds within the volatile blends elicit the attractiveness to parasitoids. One way of studying the importance of specific VOCs is to test the attractiveness of odor blends from which certain compounds have been emitted. We used this approach by testing the attraction of naive and experienced females of the two parasitoids Cotesia marginiventris and Microplitis rufiventris to partially altered volatile blends of maize seedlings (Zea mays var. Delprim) infested with Spodoptera littoralis larvae. Adsorbing filter tubes containing carbotrap-C or silica were installed in a four-arm olfactometer between the odor source vessels and the arms of the olfactometer. The blends breaking through were tested for chemical composition and attractiveness to the wasps. Carbotrap-C adsorbed most of the sesquiterpenes, but the breakthrough blend remained attractive to naive C. marginiventris females. Silica adsorbed only some of the more polar VOCs, but this essentially eliminated all attractiveness to naive C. marginiventris, implying that among the adsorbed compounds there are some that play key roles in the attraction. Unlike C. marginiventris, M. rufiventris was still attracted to the latter blend, showing that parasitoids with a comparable biology may employ different strategies in their use of plant-provided cues to locate hosts. Results from similar experiments with modified odor blends of caterpillar-infested cowpea (Vigna unguiculata) indicate that key VOCs in different plant species vary greatly in quality and/or quantity. Finally, experienced wasps were more strongly attracted to a specific blend after they perceived the blend while ovipositing in a host. Considering the high number of distinct adsorbing materials available today, this in situ modification of complex volatile blends provides a new and promising approach pinpointing on key attractants within these blends. Advantages and disadvantages compared to other approaches are discussed.
  • Publication
    Accès libre
    Evaluating the Induced-Odour Emission of a Bt Maize and its Attractiveness to Parasitic Wasps
    The current discussion on the safety of transgenic crops includes their effects on beneficial insects, such as parasitoids and predators of pest insects. One important plant trait to consider in this context is the emission of volatiles in response to herbivory. Natural enemies use the odours that result from these emissions as cues to locate their herbivorous prey and any significant change in these plant-provided signals may disrupt their search efficiency. There is a need for practical and reliable methods to evaluate transgenic crops for this and other important plant traits. Moreover, it is imperative that such evaluations are done in the context of variability for these traits among conventional genotypes of a crop. For maize and the induction of volatile emissions by caterpillar feeding this variability is known and realistic comparisons can therefore be made. Here we used a six-arm olfactometer that permits the simultaneous collection of volatiles emitted by multiple plants and testing of their attractiveness to insects. With this apparatus we measured the induced odour emissions of Bt maize (Bt11, N4640Bt) and its near-isogenic line (N4640) and the attractiveness of these odours to Cotesia marginiventris and Microplitis rufiventris, two important larval parasitoids of common lepidopteran pests. Both parasitoid species were strongly attracted to induced maize odour and neither wasp distinguished between the odours of the transgenic and the isogenic line. Also wasps that had previously experienced one of the odours during a successful oviposition divided their choices equally between the two odours. However, chemical analyses of collected odours revealed significant quantitative differences. The same 11 compounds dominated the blends of both genotypes, but the isogenic line released a larger amount of most of these. These differences may be due to altered resource allocation in the transgenic line, but it had no measurable effect on the wasps’ behaviour. All compounds identified here had been previously reported for maize and the differential quantities in which they were released fall well within the range of variability observed for other maize genotypes.