Options
Thomann, Pierre
Nom
Thomann, Pierre
Affiliation principale
Fonction
Professeur.e émérite
Email
pierre.thomann@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 50
- PublicationAccès libreFirst uncertainty evaluation of the FoCS-2 primary frequency standard(2018)
; ; ; ;Morel, J ;Bernier, L. G ;Schenker, Dominique; We report the uncertainty evaluation of the Swiss continuous primary frequency standard FoCS-2 (Fontaine Continue Suisse). Unlike other primary frequency standards which are working with clouds of cold atoms, this fountain uses a continuous beam of cold caesium atoms bringing a series of metrological advantages and specific techniques for the evaluation of the uncertainty budget. Recent improvements of FoCS-2 have made possible the evaluation of the frequency shifts and of their uncertainties in the order of 1 × 10−15. When operating in an optimal regime a relative frequency instability of 8 × 10−14 (τ/s) −1/2 is obtained. The relative standard uncertainty reported in this article, 1.99 × 10−15, is strongly dominated by the statistics of the frequency measurements. - PublicationAccès libreMeasurement of the magnetic field profile in the atomic fountain clock FoCS-2 using Zeeman spectroscopy(2017)
; ; ;Stefanov, André; ;Morel, Jacques; We report the evaluation of the second-order Zeeman shift in the continuous atomic fountain clock FoCS-2. Because of its continuous operation and geometrical constraints, the methods used in pulsed fountains are not applicable. We use here time-resolved Zeeman spectroscopy to probe the magnetic field profile in the clock. Pulses of ac magnetic excitation allow us to spatially resolve the Zeeman frequency and to evaluate the Zeeman shift with a relative uncertainty smaller than 5 × 10−16. - PublicationAccès libreStatus and prospect of the Swiss continuous Cs fountain FoCS-2(2016)
; ; ;Petersen, Michael ;Morel, Jacques ;Bernier, Laurent-Guy; The continuous cesium fountain clock FoCS-2 at METAS presents many unique characteristics and challenges in comparison with standard pulsed fountain clocks. For several years FoCS-2 was limited by an unexplained frequency sensitivity on the velocity of the atoms, in the range of 140 · 10-15. Recent experiments allowed us to identify the origin of this problem as undesirable microwave surface currents circulating on the shield of the coaxial cables that feed the microwave cavity. A strong reduction of this effect was obtained by adding microwave absorbing coatings on the coaxial cables and absorbers inside of the vacuum chamber. This breakthrough opens the door to a true metrological validation of the fountain. A series of simulation tools have already been developed and proved their efficiency in the evaluation of some of the uncertainties of the continuous fountain. With these recent improvements, we are confident in the future demonstration of an uncertainty budget at the 10-15 level and below. - PublicationAccès libreExperimental techniques for optical frequency metrology(2014)
;Bucalović, NikolaIn the framework of this thesis, I present recent activities in the Laboratoire Temps-Fréquence (LTF) of the University of Neuchâtel, concerning the optical frequency metrology group. We developed the frequency discriminator technique for the characterization of the narrow linewidth heterodyne optical beats. The examination of the four different types of the frequency and phase discriminators has identified the appropriate tools for the analysis of the low-noise signals. We made the experimental test of the β-separation line formalism that enables easy calculation of the laser linewidth from its frequency noise power spectral density (PSD). Earlier proposed geometrical approximation has been validated in a wide linewidth range and for different laser line shapes. We developed and characterized the second ultra-stable high-finesse Perot-Fabry passive reference cavity. A novel low-noise planar waveguide extended cavity laser (PW-ECL) has been stabilized to this reference cavity in a Pound-Drever-Hall stabilization scheme. A thermal model of the cavity enclosure has been made and based on that an improvement in the temperature control system was possible, resulting in the higher flexibility of the cavity temperature change. Finally, the noise properties of a novel type of the ultrafast optical frequency comb were examined. A diode-pumped solid-state laser (DPSSL) Er:Yb:glass (ERGO) frequency comb is proven to be capable of the coherent frequency division from optical to microwave, at the level of stability of 10-15 at 1 s. It is shown that the dynamics of the carrier-envelope offset (CEO) beat plays an important role in the stabilization of this type of the ultrafast laser. - PublicationAccès libreCross-influence between the two servo-loops of a fully-stabilized Er:fiber optical frequency comb(2012-9-28)
; ; ; ; ; We present a study of the impact of the cross-coupling between the two servo loops used to stabilize the repetition rate frep and the carrier-envelope offset (CEO) frequency fCEO in a commercial Er:fiber frequency comb, based on the combination of experimental measurements and a model of the coupled loops. The developed theoretical model enables us to quantify the influence of the servo-loop coupling on an optical comb line, by simulating the hypothetic case where no coupling would be present. Numerical values for the model were obtained from an extensive characterization of the comb, in terms of frequency noise and dynamic response to a modulation applied to each actuator, for both frep and fCEO. To validate the model, the frequency noise of an optical comb line at 1.56 μm was experimentally measured from the heterodyne beat between the comb and a cavity-stabilized ultranarrow-linewidth laser and showed good agreement with the calculated noise spectrum. The coupling between the two stabilization loops results in a more than 10-fold reduction of the comb mode frequency noise power spectral density in a wide Fourier frequency range. - PublicationAccès libreExperimental Validation of a Simple Approximation to Determine the Linewidth of a Laser from its Frequency Noise Spectrum(2012-7-2)
; ; ; ; ; Laser frequency fluctuations can be characterized either comprehensively by the frequency noise spectrum or in a simple but incomplete manner by the laser linewidth. A formal relation exists to calculate the linewidth from the frequency noise spectrum, but it is laborious to apply in practice. We recently proposed a much simpler geometrical approximation applicable to any arbitrary frequency noise spectrum. Here we present an experimental validation of this approximation using laser sources of different spectral characteristics. For each of them, we measured both the frequency noise spectrum to calculate the approximate linewidth and the actual linewidth directly. We observe a very good agreement between the approximate and directly measured linewidths over a broad range of values (from kilohertz to megahertz) and for significantly different laser line shapes. - PublicationAccès libreNoise properties of an optical frequency comb from a SESAM-modelocked 1.5 µm solid-state laser stabilized to the 10E-13 level(2012-5-26)
; ; ; ; ;Stumpf, Max; ;Pekarek, Selina ;Oehler, Andreas; ;Keller, UrsulaWe present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×1E−13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×1E−14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison. - PublicationAccès libreLinewidth of a quantum cascade laser assessed from its frequency noise spectrum and impact of the current driver(2012-4-21)
; ; ; ; ; We report on the measurement of the frequency noise properties of a 4.6-μm distributed-feedback quantum-cascade laser (QCL) operating in continuous wave near room temperature using a spectroscopic set-up. The flank of the R(14) ro-vibrational absorption line of carbon monoxide at 2196.6 cm^−1 is used to convert the frequency fluctuations of the laser into intensity fluctuations that are spectrally analyzed. We evaluate the influence of the laser driver on the observed QCL frequency noise and show how only a low-noise driver with a current noise density below ≈1 nA/√Hz allows observing the frequency noise of the laser itself, without any degradation induced by the current source. We also show how the laser FWHM linewidth, extracted from the frequency noise spectrum using a simple formula, can be drastically broadened at a rate of ≈1.6 MHz/(nA/√Hz) for higher current noise densities of the driver. The current noise of commercial QCL drivers can reach several nA/√Hz , leading to a broadening of the linewidth of our QCL of up to several megahertz. To remedy this limitation, we present a low-noise QCL driver with only 350 pA/√Hz current noise, which is suitable to observe the ≈550 kHz linewidth of our QCL. - PublicationAccès libreTemperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature(2012)
; ; ;Di Francesco, Joab F.; We report on the measurement of the frequency noise power spectral density in a distributed feedback quantum cascade laser over a wide temperature range, from 128 K to 303 K. As a function of the device temperature, we show that the frequency noise behavior is characterized by two different regimes separated by a steep transition at ≈200 K. While the frequency noise is nearly unchanged ~200 K, it drastically increases at lower temperature with an exponential dependence. We also show that this increase is entirely induced by current noise intrinsic to the device. In contrast to earlier publications, a single laser is used here in a wide temperature range allowing the direct assessment of the temperature dependence of the frequency noise. - PublicationAccès libreTheoretical analysis of aliasing noises in cold atom Mach-Zehnder interferometers(2012)
; ; We present a theoretical analysis of aliasing noises that might appear in cold atom Mach-Zehnder interferometers used for the measurement of various physical quantities. We focus more specifically on single cold atom gyroscopes. To evaluate the level of aliasing noises, we have developed a model based on the power spectral densities of the different identified noise sources as input parameters and which makes use of a servo-loop to realize a precise measurement of the rotation rate. The model allows one to take into account different modes of operation, like a continuous as well as a pulsed or even a multi-ball operation. For monokinetic atoms, we show that the intermodulation noise can be completely filtered out with a continuous mode of operation and an optimum modulation scheme for any modulation frequency but also with a pulsed operation however only for specific launching frequencies. In the case of a real continuous atomic beam having a velocity distribution, it comes out that a high attenuation can be reached which indicates clearly the potential stability improvement that can be expected from a continuous operation.