Options
Schilt, Stephane
Nom
Schilt, Stephane
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 74
- PublicationAccès libreAbsolute frequency referencing in the long wave infrared using a quantum cascade laser frequency comb(2022-4-4)
; ;Gianella, Michele ;Jouy, Pierre ;Kapsalidis, Filippos ;Shahmohammadi, Mehran ;Beck, Mattias; ; ;Hugi, Andreas ;Faist, Jérôme ;Emmenegger, Lukas; Optical frequency combs (OFCs) based on quantum cascade lasers (QCLs) have transformed mid-infrared spectroscopy. However, QCL-OFCs have not yet been exploited to provide a broadband absolute frequency reference. We demonstrate this possibility by performing comb-calibrated spectroscopy at 7.7 µm (1305 cm−1) using a QCL-OFC referenced to a molecular transition. We obtain 1.5·10−10 relative frequency stability (100-s integration time) and 3·10−9 relative frequency accuracy, comparable with state-of-the-art solutions relying on nonlinear frequency conversion. We show that QCL-OFCs can be locked with sub-Hz-level stability to a reference for hours, thus promising their use as metrological tools for the mid-infrared. - PublicationAccès libreCoherently-averaged dual comb spectrometer at 7.7 µm with master and follower quantum cascade lasers(2021-6)
; ; ;Terrasanta, Giulio; ; ;Gianella, Michele ;Jouy, Pierre ;Kapsalidis, Filippos ;Shahmohammadi Mehran, Mehran ;Beck Matthias, Matthias; ;Faist, Jérôme ;Emmenegger, Lukas; ;Hugi, AndreasWe demonstrate coherent averaging of the multi-heterodyne beat signal between two quantum cascade laser frequency combs in a master-follower configuration. The two combs are mutually locked by acting on the drive current to control their relative offset frequency and by radio-frequency extraction and injection locking of their intermode beat signal to stabilize their mode spacing difference. By implementing an analog common-noise subtraction scheme, a reduction of the linewidth of all heterodyne beat notes by five orders of magnitude is achieved compared to the free-running lasers. We compare stabilization and post-processing corrections in terms of amplitude noise. While they give similar performances in terms of signal-to-noise ratio, real-time processing of the stabilized signal is less demanding in terms of computational power. Lastly, a proof-of-principle spectroscopic measurement was performed, showing the possibility to reduce the amount of data to be processed by three orders of magnitude, compared to the free-running system. - PublicationMétadonnées seulementRb-stabilized laser at 1572 nm for CO2 monitoring(2016-7-4)
; ; ; ; ; We have developed a compact rubidium-stabilized laser system to serve as optical frequency reference in the 1.55-m wavelength region, in particular for CO2 monitoring at 1572 nm. The light of a fiber-pigtailed distributed feedback (DFB) laser emitting at 1560 nm is frequency-doubled and locked to a sub-Doppler rubidium transition at 780 nm using a 2-cm long vapor glass cell. Part of the DFB laser light is modulated with an electro-optical modula-tor enclosed in a Fabry-Perot cavity, generating an optical frequency comb with spectral cover-age extending from 1540 nm to 1580 nm. A second slave DFB laser emitting at 1572 nm and offset-locked to one line of the frequency comb shows a relative frequency stability of 1·10-11at 1 s averaging time and <4·10-12 from 1 hour up to 3 days. - PublicationAccès libreCompact rubidium-stabilized multi-frequency reference source in the 1.55-μm region(2015-6-1)
; ; ; Combining light modulation and frequency conversion techniques, a compact and simple frequency-stabilized optical frequency comb spanning over 45 nm in the 1.56-μm wavelength region is demonstrated. It benefits from the high-frequency stability achievable from rubidium atomic transitions at 780 nm probed in a saturation absorption scheme, which is transferred to the 1.56-μm spectral region via a second-harmonic generation process. The optical frequency comb is generated by an electro-optic modulator enclosed in a Fabry–Perot cavity that is injected by the fundamental frequency stabilized laser. Frequency stability better than 2 kHz has been demonstrated on time scales between 1000 s and 2 days both at 1560 nm, twice the rubidium wavelength, and for a comb line at 1557 nm. - PublicationAccès libreWavelength tuning and thermal dynamics of continuous-wave mid-IR distributed feedback quantum cascade laser(2013-7-17)
; ;Cappelli, Francesco; ; ;Bartalini, SaverioWe report on the wavelength tuning dynamics in continuous-wave distributed feedback quantum cascade lasers (QCLs). The wavelength tuning response for direct current modulation of two mid-IR QCLs from different suppliers was measured from 10 Hz up to several MHz using ro-vibrational molecular resonances as frequency-to-intensity converters. Unlike the output intensity, which can be modulated up to several gigahertz, the frequency-modulation bandwidth was found to be on the order of 200 kHz, limited by the laser thermal dynamics. A non-negligible roll-off and a significant phase shift are observed above a few hundred hertz already and explained by a thermal model. - PublicationMétadonnées seulement
- PublicationMétadonnées seulementPhase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser(2013)
;Klenner, Alexander ;Emaury, Florian ;Schriber, Cinia ;Diebold, Andreas ;Saraceno, Clara Jody; ;Keller, Ursula - PublicationAccès libreFrequency Noise and Linewidth of Mid-infrared Continuous-Wave Quantum Cascade Lasers: An Overview(Bellingham, WA: SPIE Press, 2013)
; ; ; - PublicationAccès libreUltra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-?m range(2013)
; ; ; ; ;Grop, Serge ;Dubois, Benoît ;Giordano, Vincent - PublicationAccès libre