Options
Shehzad, Atif
Nom
Shehzad, Atif
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
3 Résultats
Voici les éléments 1 - 3 sur 3
- PublicationAccès libre10 kHz linewidth mid-infrared quantum cascade laser by stabilization to an optical delay line
; ; ;Matthey, Renaud; We present a mid-infrared quantum cascade laser (QCL) with a sub-10 kHz full width at half-maximum linewidth (at 1 s integration time) achieved by stabilization to a free-space optical delay line. The linear range in the center of a fringe detected at the output of an imbalanced Mach–Zehnder interferometer implemented with a short free-space pathlength difference of only 1 m is used as a frequency discriminator to detect the frequency fluctuations of the QCL. Feedback is applied to the QCL current to lock the laser frequency to the delay line. The application of this method in the mid-infrared is reported for the first time, to the best of our knowledge. By implementing it in a simple self-homodyne configuration, we have been able to reduce the frequency noise power spectral density of the QCL by almost 40 dB below 10 kHz Fourier frequency, leading to a linewidth reduction by a factor of almost 60 compared to the free-running laser. The present limits of the setup are assessed and discussed. - PublicationAccès libreElectrically-driven pure amplitude and frequency modulation in a quantum cascade laser
; ; ;Matthey, Renaud ;Blaser, Stéphane ;Gresch, Tobias ;Maulini, Richard ;Muller, Antoine; We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only. - PublicationAccès libreFrequency noise correlation between the offset frequency and the mode spacing in a mid-infrared quantum cascade laser frequency comb
; ; ; ;Kapsalidis, Filippos ;Shahmohammadi, Mehran ;Beck, Mattias ;Hugi, Andreas ;Jouy, Pierre ;Faist, Jérôme; The generation of frequency combs in the mid-infrared (MIR) spectral range by quantum cascade lasers (QCLs) has the potential for revolutionizing dual-comb multi-heterodyne spectroscopy in the molecular fingerprint region. However, in contrast to frequency combs based on passively mode-locked ultrafast lasers, their operation relies on a completely different mechanism resulting from a four-wave mixing process occurring in the semiconductor gain medium that locks the modes together. As a result, these lasers do not emit pulses and no direct self-referencing of a QCL comb spectrum has been achieved so far. Here, we present a detailed frequency noise characterization of a MIR QCL frequency comb operating at a wavelength of 8 μm with a mode spacing of ~ 7.4 GHz. Using a beat measurement with a narrow-linewidth single-mode QCL in combination with a dedicated electrical scheme, we measured the frequency noise properties of an optical mode of the QCL comb, and indirectly of its offset frequency for the first time, without detecting it by the standard approach of nonlinear interferometry applied to ultrafast mode-locked lasers. In addition, we also separately measured the noise of the comb mode spacing extracted electrically from the QCL. We observed a strong anti-correlation between the frequency fluctuations of the offset frequency and mode spacing, leading to optical modes with a linewidth slightly below 1 MHz in the free-running QCL comb (at 1-s integration time), which is narrower than the individual contributions of the offset frequency and mode spacing that are at least 2 MHz each.