Options
Investigation of novel actuator and frequency noise in quantum cascade lasers and QCL combs
Auteur(s)
Editeur(s)
Maison d'édition
Neuchâtel
Date de parution
2021
Mots-clés
- Lasers à cascade quantique
- peigne de fréquence à laser à cascade quantique
- résistance intégrée
- infrarouge moyen
- modulation de fréquence
- modulation d’amplitude
- métrologie temps-fréquence
- bruit de fréquence
- bruit de phase
- largeur de raie
- laser à faible largeur de raie
- décalage de fréquence entre porteuse et enveloppe
- bruit de tension
- stabilisation en fréquence
- boucle de stabilisation
- ligne à retard
- extraction radio-fréquence
- spectroscopie moléculaire
- quantum cascade lasers
- quantum cascade laser frequency combs
- integrated heater
- mid-infrared
- frequency modulation
- amplitude modulation
- time and frequency metrology
- frequency noise
- phase noise
- linewidth
- narrow-linewidth laser
- carrier-envelope offset frequency
- voltage noise
- frequency stabilization
- stabilization loop
- delay line
- radio-frequency extraction
- molecular spectroscopy
Lasers à cascade quan...
peigne de fréquence à...
résistance intégrée
infrarouge moyen
modulation de fréquen...
modulation d’amplitud...
métrologie temps-fréq...
bruit de fréquence
bruit de phase
largeur de raie
laser à faible largeu...
décalage de fréquence...
bruit de tension
stabilisation en fréq...
boucle de stabilisati...
ligne à retard
extraction radio-fréq...
spectroscopie molécul...
quantum cascade laser...
quantum cascade laser...
integrated heater
mid-infrared
frequency modulation
amplitude modulation
time and frequency me...
frequency noise
phase noise
linewidth
narrow-linewidth lase...
carrier-envelope offs...
voltage noise
frequency stabilizati...
stabilization loop
delay line
radio-frequency extra...
molecular spectroscop...
Résumé
Les lasers à cascade quantique (QCL) ont de nombreuses applications, notamment dans la détection de traces de gaz et la spectroscopie à haute résolution. L'une des principales exigences de la spectroscopie à haute résolution est la pureté spectrale du laser qui est souvent représentée en termes de sa largeur de raie, c'est-à-dire la largeur totale à mi-hauteur du spectre d'émission. Une autre exigence est la capacité de moduler la longueur d'onde ou la fréquence du laser, qui est couramment utilisée dans les méthodes spectroscopiques comme la spectroscopie par modulation de longueur d'onde (Wavelength Modulation Spectroscopy – WMS), la spectroscopie par modulation de fréquence (Frequency Modulation Spectroscopy – FMS), etc, et qui est généralement obtenue par une modulation du courant d'injection du laser. Toutefois, cette modulation entraîne une modulation simultanée de la puissance optique qui, dans de nombreux cas, n'est pas souhaitée.
Cette thèse présente de nouvelles approches pour répondre à ces besoins avec des QCLs. D'une part, un nouvel actuateur sous la forme d'un élément résistif intégré est étudié pour son utilisation potentielle pour réduire le bruit de fréquence d’un QCL et, par conséquent, pour rétrécir sa largeur de raie. Les problèmes rencontrés sont discutés. La génération d'une modulation d'amplitude ou de fréquence pure dans un QCL en utilisant cet élément résistif est également présentée. L'approche proposée est prometteuse pour améliorer les performances dans des applications de détection de traces de gaz dans lesquelles la modulation résiduelle nuit aux performances du système et où une modulation pure d'amplitude ou de fréquence est souhaitée. Une analyse complète de la modulation résiduelle, présentée à deux fréquences de modulation de 1 et 10 kHz, a montré une réduction de la modulation d'amplitude résiduelle de près de 20 dB dans le cas de la modulation de fréquence pure et de plus de 20 dB de la modulation de fréquence résiduelle dans le cas de la modulation d'amplitude pure par rapport à une modulation appliquée sur le courant d’injection du QCL. L'approche proposée est simple et facile à mettre en oeuvre par rapport à d'autres méthodes précédemment présentées qui nécessitent soit l’utilisation de lasers externes dans le proche infrarouge éclairant la face avant du QCL ou un QCL à trois sections spécialement conçu pour obtenir des modulations d'amplitude ou de fréquence pure.
Dans le proche infrarouge, la stabilisation de la fréquence d’un laser sur une longue ligne à retard à fibre optique a été démontrée comme une méthode alternative pour atteindre des largeurs de raie ultra-étroites. Pour la première fois, la mise en oeuvre d'une ligne à retard pour la réduction du bruit de fréquence d’un laser dans l’infrarouge moyen est présentée dans cette thèse. Par rapport aux démonstrations précédentes dans le proche infrarouge, plusieurs adaptations ont été nécessaires en raison de la disponibilité moindre des composants optiques clés tels que les fibres optiques monomodes à faibles pertes et les modulateurs acousto-optiques. Dans une démonstration de principe, un court délai en espace libre d’une longueur de 1 m seulement a été mis en oeuvre dans une configuration self-homodyne évitant l'utilisation d'un modulateur acousto-optique. Une réduction de 40 dB de la densité spectrale de bruit de fréquence du laser a été obtenue, ce qui se traduit par une largeur de raie inférieure à 10 kHz pour un temps d'intégration de 1 s. En créant des délais plus longs, soit en espace libre, soit en utilisant des fibres optiques dans l’infrarouge moyen, cette approche devrait permettre d'obtenir une largeur de raie au niveau du hertz dans des QCLs.
Les peignes de fréquence produits par des QCL constituent une technologie émergente dans le domaine de la spectroscopie à deux peignes. L'observation directe de la fréquence d’offset dans un peigne QCL n'a pas été possible jusqu’à présent en utilisant la méthode standard par interférométrie f-to-2f car ces lasers n'émettent pas de courtes impulsions nécessaires pour élargir le spectre émis jusqu’à une octave de fréquence. Pour la première fois, la caractérisation indirecte de la fréquence d’offset dans un peigne QCL dans l’infrarouge moyen est présentée dans cette thèse en termes de bruit de fréquence et de réponse de modulation, en utilisant une méthode basée sur le concept d'un oscillateur de transfert.<br>
<b>Abstract</b><br>
Quantum cascade lasers (QCLs) have numerous applications especially in trace gas sensing and high-resolution spectroscopy. One of the key requirements for high-resolution spectroscopy is the laser spectral purity which is often represented in terms of the laser linewidth, i.e., the full width at half maximum of the emission spectrum. Another requirement is the ability to modulate the laser wavelength/frequency, which is routinely used in spectroscopic methods like wavelength modulation spectroscopy, frequency modulation spectroscopy, etc and is generally obtained through a modulation of the laser injection current. However, such modulation leads to a simultaneous modulation of the optical power which in many cases is undesired.
In this thesis, new approaches to address these needs are addressed. On one hand, a new actuator in QCLs in the form of a resistive element is investigated for its potential use in frequency noise reduction, hence, linewidth narrowing of a MIR QCL and encountered problems are discussed. The generation of pure amplitude or frequency modulation in a QCL using the resistive element is also presented. The proposed approach is attractive for enhanced performance in trace gas sensing applications in which the residual modulation harms the system performance and either pure amplitude or frequency modulation is required. A comprehensive analysis of residual modulation, presented at two modulation frequencies of 1 and 10 kHz, showed a reduction of the residual amplitude modulation by almost 20 dB in the case of pure frequency modulation and of the residual frequency modulation by more than 20 dB in the case of pure amplitude modulation as compared to the modulation applied to the QCL current. The proposed approach is simple and easy to implement as compared to some other methods previously reported that require external near-infrared lasers shining on the front facet of the QCL or a specially designed three-section QCL for pure amplitude and frequency generation.
In the near-infrared, frequency stabilization to a long fiber delay line was demonstrated as an alternative scheme for ultra-narrow linewidth lasers. For the first time, the implementation of a delay line for frequency noise reduction in the MIR is presented in the thesis. Compared to former demonstrations in the near-infrared, several adaptations were required due to the poorer availability of key optical components such as low-loss singlemode optical fibers and acousto-optic modulators. In the proof-of-principle demonstration, a short free-space delay of only 1 m in a self-homodyne configuration avoiding the use of an acousto-optic modulator is implemented. A 40-dB reduction of the laser frequency noise power spectral density resulting in a sub-10-kHz linewidth for 1-s integration time has been achieved. By creating longer delays either in free space or using MIR optical fibers, this approach has the potential to achieve Hz-level linewidth in QCLs.
QCL comb is an emerging technology in the field of dual-comb spectroscopy. The direct observation of the offset frequency in a QCL comb has not yet been possible using standard f-to-2f interferometry as the laser does not emit short pulses. For the first time, the indirect characterization of the offset frequency in a MIR QCL comb is presented in terms of its frequency noise and modulation response, using a method based on the transfer oscillator concept.
Cette thèse présente de nouvelles approches pour répondre à ces besoins avec des QCLs. D'une part, un nouvel actuateur sous la forme d'un élément résistif intégré est étudié pour son utilisation potentielle pour réduire le bruit de fréquence d’un QCL et, par conséquent, pour rétrécir sa largeur de raie. Les problèmes rencontrés sont discutés. La génération d'une modulation d'amplitude ou de fréquence pure dans un QCL en utilisant cet élément résistif est également présentée. L'approche proposée est prometteuse pour améliorer les performances dans des applications de détection de traces de gaz dans lesquelles la modulation résiduelle nuit aux performances du système et où une modulation pure d'amplitude ou de fréquence est souhaitée. Une analyse complète de la modulation résiduelle, présentée à deux fréquences de modulation de 1 et 10 kHz, a montré une réduction de la modulation d'amplitude résiduelle de près de 20 dB dans le cas de la modulation de fréquence pure et de plus de 20 dB de la modulation de fréquence résiduelle dans le cas de la modulation d'amplitude pure par rapport à une modulation appliquée sur le courant d’injection du QCL. L'approche proposée est simple et facile à mettre en oeuvre par rapport à d'autres méthodes précédemment présentées qui nécessitent soit l’utilisation de lasers externes dans le proche infrarouge éclairant la face avant du QCL ou un QCL à trois sections spécialement conçu pour obtenir des modulations d'amplitude ou de fréquence pure.
Dans le proche infrarouge, la stabilisation de la fréquence d’un laser sur une longue ligne à retard à fibre optique a été démontrée comme une méthode alternative pour atteindre des largeurs de raie ultra-étroites. Pour la première fois, la mise en oeuvre d'une ligne à retard pour la réduction du bruit de fréquence d’un laser dans l’infrarouge moyen est présentée dans cette thèse. Par rapport aux démonstrations précédentes dans le proche infrarouge, plusieurs adaptations ont été nécessaires en raison de la disponibilité moindre des composants optiques clés tels que les fibres optiques monomodes à faibles pertes et les modulateurs acousto-optiques. Dans une démonstration de principe, un court délai en espace libre d’une longueur de 1 m seulement a été mis en oeuvre dans une configuration self-homodyne évitant l'utilisation d'un modulateur acousto-optique. Une réduction de 40 dB de la densité spectrale de bruit de fréquence du laser a été obtenue, ce qui se traduit par une largeur de raie inférieure à 10 kHz pour un temps d'intégration de 1 s. En créant des délais plus longs, soit en espace libre, soit en utilisant des fibres optiques dans l’infrarouge moyen, cette approche devrait permettre d'obtenir une largeur de raie au niveau du hertz dans des QCLs.
Les peignes de fréquence produits par des QCL constituent une technologie émergente dans le domaine de la spectroscopie à deux peignes. L'observation directe de la fréquence d’offset dans un peigne QCL n'a pas été possible jusqu’à présent en utilisant la méthode standard par interférométrie f-to-2f car ces lasers n'émettent pas de courtes impulsions nécessaires pour élargir le spectre émis jusqu’à une octave de fréquence. Pour la première fois, la caractérisation indirecte de la fréquence d’offset dans un peigne QCL dans l’infrarouge moyen est présentée dans cette thèse en termes de bruit de fréquence et de réponse de modulation, en utilisant une méthode basée sur le concept d'un oscillateur de transfert.<br>
<b>Abstract</b><br>
Quantum cascade lasers (QCLs) have numerous applications especially in trace gas sensing and high-resolution spectroscopy. One of the key requirements for high-resolution spectroscopy is the laser spectral purity which is often represented in terms of the laser linewidth, i.e., the full width at half maximum of the emission spectrum. Another requirement is the ability to modulate the laser wavelength/frequency, which is routinely used in spectroscopic methods like wavelength modulation spectroscopy, frequency modulation spectroscopy, etc and is generally obtained through a modulation of the laser injection current. However, such modulation leads to a simultaneous modulation of the optical power which in many cases is undesired.
In this thesis, new approaches to address these needs are addressed. On one hand, a new actuator in QCLs in the form of a resistive element is investigated for its potential use in frequency noise reduction, hence, linewidth narrowing of a MIR QCL and encountered problems are discussed. The generation of pure amplitude or frequency modulation in a QCL using the resistive element is also presented. The proposed approach is attractive for enhanced performance in trace gas sensing applications in which the residual modulation harms the system performance and either pure amplitude or frequency modulation is required. A comprehensive analysis of residual modulation, presented at two modulation frequencies of 1 and 10 kHz, showed a reduction of the residual amplitude modulation by almost 20 dB in the case of pure frequency modulation and of the residual frequency modulation by more than 20 dB in the case of pure amplitude modulation as compared to the modulation applied to the QCL current. The proposed approach is simple and easy to implement as compared to some other methods previously reported that require external near-infrared lasers shining on the front facet of the QCL or a specially designed three-section QCL for pure amplitude and frequency generation.
In the near-infrared, frequency stabilization to a long fiber delay line was demonstrated as an alternative scheme for ultra-narrow linewidth lasers. For the first time, the implementation of a delay line for frequency noise reduction in the MIR is presented in the thesis. Compared to former demonstrations in the near-infrared, several adaptations were required due to the poorer availability of key optical components such as low-loss singlemode optical fibers and acousto-optic modulators. In the proof-of-principle demonstration, a short free-space delay of only 1 m in a self-homodyne configuration avoiding the use of an acousto-optic modulator is implemented. A 40-dB reduction of the laser frequency noise power spectral density resulting in a sub-10-kHz linewidth for 1-s integration time has been achieved. By creating longer delays either in free space or using MIR optical fibers, this approach has the potential to achieve Hz-level linewidth in QCLs.
QCL comb is an emerging technology in the field of dual-comb spectroscopy. The direct observation of the offset frequency in a QCL comb has not yet been possible using standard f-to-2f interferometry as the laser does not emit short pulses. For the first time, the indirect characterization of the offset frequency in a MIR QCL comb is presented in terms of its frequency noise and modulation response, using a method based on the transfer oscillator concept.
Notes
Doctorat, Université de Neuchâtel, Institut de physique
Identifiants
Type de publication
doctoral thesis
Dossier(s) à télécharger