Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Missing data simulation inside flow rate time-series using multiple-point statistics
 
  • Details
Options
Vignette d'image

Missing data simulation inside flow rate time-series using multiple-point statistics

Auteur(s)
Oriani, Fabio 
Centre d'hydrogéologie et de géothermie 
Borghi, Andrea 
Centre d'hydrogéologie et de géothermie 
Straubhaar, Julien 
Centre d'hydrogéologie et de géothermie 
Mariethoz, Grégoire 
Centre d'hydrogéologie et de géothermie 
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Date de parution
2016-10
In
ENVIRONMENTAL MODELLING & SOFTWARE
No
86
De la page
264
A la page
276
Revu par les pairs
1
Mots-clés
  • Time-series
  • Flow rate
  • Missing data
  • Non-parametric
  • Resampling
  • ARMAX
  • Multiple-point statistics
  • Time-series

  • Flow rate

  • Missing data

  • Non-parametric

  • Resampling

  • ARMAX

  • Multiple-point statis...

Résumé
The direct sampling (DS) multiple-point statistical technique is proposed as a non-parametric missing data simulator for hydrological flow rate time-series. The algorithm makes use of the patterns contained inside a training data set to reproduce the complexity of the missing data. The proposed setup is tested in the reconstruction of a flow rate time-series while considering several missing data scenarios, as well as a comparative test against a time-series model of type ARMAX. The results show that DS generates more realistic simulations than ARMAX, better recovering the statistical content of the missing data. The predictive power of both techniques is much increased when a correlated flow rate time-series is used, but DS can also use incomplete auxiliary time-series, with a comparable prediction power. This makes the technique a handy simulation tool for practitioners dealing with incomplete data sets.
Identifiants
https://libra.unine.ch/handle/123456789/25018
_
10.1016/j.envsoft.2016.10.002
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2023-01-10_110_8035.pdf (2.65 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00