- Straubhaar, Julien

###### Options

# Straubhaar, Julien

Nom

Straubhaar, Julien

Affiliation principale

Email

julien.straubhaar@unine.ch

Identifiants

## Résultat de la recherche

37 Résultats Retour aux résultats

### Filtres

##### Auteur

##### Éditeur

##### Institution

##### Sujet

##### Type

### Paramètres

Trier par

Résultats par page

Voici les éléments 1 - 10 sur 37

- PublicationAccès libreEfficiency of template matching methods for Multiple-Point Statistics simulations(2021-8)
;Sharifzadeh Lari, Mansoureh; Montrer plus Almost all Multiple-Point Statistic (MPS) methods use internally a template matching method to select patterns that best match conditioning data. The purpose of this paper is to analyze the performances of ten of the most frequently used template matching techniques in the framework of MPS algorithms. Performance is measured in terms of computing efficiency, accuracy, and memory usage. The methods were tested with both categorical and continuous training images (TI). The analysis considers the ability of those methods to locate rapidly and with minimum error a data event with a specific proportion of known pixels and a certain amount of noise. Experiments indicate that the Coarse to Fine using Entropy (CFE) method is the fastest in all configurations. Skipping methods are efficient as well. In terms of accuracy, and without noise all methods except CFE and cross correlation (CC) perform well. CC is the least accurate in all configurations if the TI is not normalized. This method performs better when normalized training images are used. The Binary Sum of Absolute Difference is the most robust against noise. Finally, in terms of memory usage, CFE is the worst among the ten methods that were tested; the other methods are not significantly different.Montrer plus - PublicationAccès libreIce volume and basal topography estimation using geostatistical methods and GPR measurements: Application on the Tsanfleuron and Scex Rouge glacier, Swiss Alps(2021-7)
; ; ; ; Montrer plus Ground Penetrating Radar (GPR) is nowadays widely used for determining glacier thickness. However, this method provides thickness data only along the acquisition lines and therefore interpolation has to be made between them. Depending on the interpolation strategy, calculated ice volumes can differ and can lack an accurate error estimation. Furthermore, glacial basal topography is often characterized by complex geomorphological features, which can be hard to reproduce using classical 5 interpolation methods, especially when the conditioning data are sparse or when the morphological features are too complex. This study investigates the applicability of multiple-point statistics (MPS) simulations to interpolate glacier bedrock topography using GPR measurements. In 2018, a dense GPR data set was acquired on the Tsanfleuron Glacier (Switzerland). The results obtained with the direct sampling MPS method are compared against those obtained with kriging and sequential Gaussian simulations (SGS) on both a synthetic data set – with known reference volume and bedrock topography – and the real data 10 underlying the Tsanfleuron glacier. Using the MPS modelled bedrock, the ice volume for the Scex Rouge and Tsanfleuron Glacier is estimated to be 113.9 ± 1.6 Miom3 . The direct sampling approach, unlike the SGS and the kriging, allowed not only an accurate volume estimation but also the generation of a set of realistic bedrock simulations. The complex karstic geomorphological features are reproduced, and can be used to significantly improve for example the precision of under-glacial flow estimation.Montrer plus - PublicationAccès libreConditioning Multiple-Point Statistics Simulation to Inequality Data(2021-2)
; Montrer plus Stochastic modeling is often employed in environmental sciences for the analysis and understanding of complex systems. For example, random fields are key components in uncertainty analysis or Bayesian inverse modeling. Multiple-point statistics (MPS) provides efficient simulation tools for simulating fields reproducing the spatial statistics depicted in a training image (TI), while accounting for local or block conditioning data. Among MPS methods, the direct sampling algorithm is a flexible pixel-based technique that consists in first assigning the conditioning data values (so-called hard data) in the simulation grid, and then in populating the rest of the simulation domain in a random order by successively pasting a value from a TI cell sharing a similar pattern. In this study, an extension of the direct sampling method is proposed to account for inequality data, that is, constraints in given cells consisting of lower and/or upper bounds for the simulated values. Indeed, inequality data are often available in practice. The new approach involves the adaptation of the distance used to compare and evaluate the match between two patterns to account for such constraints. The proposed method, implemented in the DeeSse code, allows generating random fields both reflecting the spatial statistics of the TI and honoring the inequality constraints. Finally examples of topography simulations illustrate and show the capabilities of the proposed method.Montrer plus - PublicationAccès libre3D multiple-point statistics simulations of the Roussillon Continental Pliocene aquifer using DeeSse(2020-10)
; ; ; ;Issautier, BenoîtCabellero, YvanMontrer plus This study introduces a novel workflow to model the heterogeneity of complex aquifers using the multiplepoint statistics algorithm DeeSse. We illustrate the approach by modeling the Continental Pliocene layer of the Roussillon aquifer in the region of Perpignan (southern France). When few direct observations are available, statistical inference from field data is difficult if not impossible and traditional geostatistical approaches cannot be applied directly. By contrast, multiple-point statistics simulations can rely on one or several alternative conceptual geological models provided using training images (TIs). But since the spatial arrangement of geological structures is often non-stationary and complex, there is a need for methods that allow to describe and account for the non-stationarity in a simple but efficient manner. The main aim of this paper is therefore to propose a workflow, based on the direct sampling algorithm DeeSse, for these situations. The conceptual model is provided by the geologist as a 2D non-stationary training image in map view displaying the possible organization of the geological structures and their spatial evolution. To control the non-stationarity, a 3D trend map is obtained by solving numerically the diffusivity equation as a proxy to describe the spatial evolution of the sedimentary patterns, from the sources of the sediments to the outlet of the system. A 3D continuous rotation map is estimated from inferred paleoorientations of the fluvial system. Both trend and orientation maps are derived from geological insights gathered from outcrops and general knowledge of processes occurring in these types of sedimentary environments. Finally, the 3D model is obtained by stacking 2D simulations following the paleotopography of the aquifer. The vertical facies transition between successive 2D simulations is controlled partly by the borehole data used for conditioning and by a sampling strategy. This strategy accounts for vertical probability of transitions, which are derived from the borehole observations, and works by simulating a set of conditional data points from one layer to the next. This process allows us to bypass the creation of a 3D training image, which may be cumbersome, while honoring the observed vertical continuity.Montrer plus - PublicationAccès libreImpact of phases distribution on mixing and reactions in unsaturated porous media(2020-7)
;Jimenez-Martinez, Joaquin ;Alcolea, Andrès; Montrer plus The impact of phases distribution on mixing and reaction is hardly assessable experimentally. We use a multiple point statistical method, which belongs to the family of machine learning algorithms, to generate simulations of phases distributions from data out of laboratory experiments. The simulations honour the saturation of the laboratory experiments, resemble the statistical distributions of several geometric descriptors and respect the physics imposed by capillary forces. The simulated phases distributions are used to compute solute transport. The breakthrough curves reveal that different phases distributions lead to broad ranges of early arrival times and long-term tailings as saturation decreases. For a given saturation, a similar long-term scaling of mixing area, interface length, and corresponding reactivity is observed regardless of phases distribution. However, phases distribution has a clear impact on the final values (before breakthrough) of area of mixing, interface length and mass of reaction product.Montrer plus - PublicationAccès libreA Framework for the Cross‐Validation of Categorical Geostatistical Simulations(2020-6)
; ; Montrer plus The mapping of subsurface parameters and the quantification of spatial uncertainty requires selecting adequate models and their parameters. Cross‐validation techniques have been widely used for geostatistical model selection for continuous variables, but the situation is different for categorical variables. In these cases, cross‐validation is seldom applied, and there is no clear consensus on which method to employ. Therefore, this paper proposes a systematic framework for the cross‐validation of geostatistical simulations of categorical variables such as geological facies. The method is based on K‐fold cross‐validation combined with a proper scoring rule. It can be applied whenever an observation data set is available. At each cross‐validation iteration, the training set becomes conditioning data for the tested geostatistical model, and the ensemble of simulations is compared to true values. The proposed framework is generic. Its application is illustrated with two examples using multiple‐point statistics simulations. In the first test case, the aim is to identify a training image from a given data set. In the second test case, the aim is to identify the parameters in a situation including nonstationarity for a coastal alluvial aquifer in the south of France. Cross‐validation scores are used as metrics of model performance and quadratic scoring rule, zero‐one score, and balanced linear score are compared. The study shows that the proposed fivefold stratified cross‐validation with the quadratic scoring rule allows ranking the geostatistical models and helps to identify the proper parameters.Montrer plus - PublicationAccès libreMultiple-point statistics using multi-resolution images(2020-2-4)
; ; Chugunova, TatianaMontrer plus Multiple-point statistics (MPS) is a simulation technique allowing to generate images that reproduce the spatial features present in a training image (TI). MPS algorithms consist in sequentially filling a simulation grid such that patterns around the simulated values come from the TI. Following this principle, joint simulations of multiple variables can be handled and complex heterogeneous fields can be generated. However, inconsistent patterns are often found in the results and some spatial features can be difficult to reproduce. In this paper, a new MPS algorithm based on a multi-resolution representation of the TI is proposed to enhance the quality of the realizations. The method consists in first building a pyramid of images from the TI by successive convolution using Gaussian-like kernels. Secondly, a MPS simulation is done at the lowest resolution level. Then, the result is expanded to the next level of resolution (one rank higher) and used as a conditioning variable for a joint MPS simulation at that level. This last step is repeated up to the initial resolution, where the final simulation is retrieved. The method is implemented in the DeeSse code based on the direct sampling algorithm. Most of the features provided by the direct sampling (conditioning to hard data, uni- or multi-variate simulation of categorical and continuous variables, scaling and rotation of the training structures) are compatible with the proposed method and the usability is maintained. Finally, various examples show that in most of the situations, combining Gaussian pyramids with MPS allows to get results of better quality and in less time compared to direct MPS simulations.Montrer plus - PublicationAccès libreSimulating rainfall time-series: how to account for statistical variability at multiple scales?(2018)
; ;Mehrotra, R ;Mariéthoz, Grégoire; ;Sharma, AMontrer plus Daily rainfall is a complex signal exhibiting alternation of dry and wet states, seasonal fluctuations and an irregular behavior at multiple scales that cannot be preserved by stationary stochastic simulation models. In this paper, we try to investigate some of the strategies devoted to preserve these features by comparing two recent algorithms for stochastic rainfall simulation: the first one is the modified Markov model, belonging to the family of Markov-chain based techniques, which introduces non-stationarity in the chain parameters to preserve the long-term behavior of rainfall. The second technique is direct sampling, based on multiple-point statistics, which aims at simulating a complex statistical structure by reproducing the same data patterns found in a training data set. The two techniques are compared by first simulating a synthetic daily rainfall time-series showing a highly irregular alternation of two regimes and then a real rainfall data set. This comparison allows analyzing the efficiency of different elements characterizing the two techniques, such as the application of a variable time dependence, the adaptive kernel smoothing or the use of low-frequency rainfall covariates. The results suggest, under different data availability scenarios, which of these elements are more appropriate to represent the rainfall amount probability distribution at different scales, the annual seasonality, the dry-wet temporal pattern, and the persistence of the rainfall events.Montrer plus - PublicationAccès libreMissing data simulation inside flow rate time-series using multiple-point statistics(2016-10)
; ; ; ; Montrer plus The direct sampling (DS) multiple-point statistical technique is proposed as a non-parametric missing data simulator for hydrological flow rate time-series. The algorithm makes use of the patterns contained inside a training data set to reproduce the complexity of the missing data. The proposed setup is tested in the reconstruction of a flow rate time-series while considering several missing data scenarios, as well as a comparative test against a time-series model of type ARMAX. The results show that DS generates more realistic simulations than ARMAX, better recovering the statistical content of the missing data. The predictive power of both techniques is much increased when a correlated flow rate time-series is used, but DS can also use incomplete auxiliary time-series, with a comparable prediction power. This makes the technique a handy simulation tool for practitioners dealing with incomplete data sets.Montrer plus - PublicationAccès libreComparing connected structures in ensemble of random fields(2016-10)
;Rongier, Guillaume ;Collon, Pauline; ; Sausse, JudithMontrer plus Very different connectivity patterns may arise from using different simulation methods or sets of parameters, and therefore different flow properties. This paper proposes a systematic method to compare ensemble of categorical simulations from a static connectivity point of view. The differences of static connectivity cannot always be distinguished using two point statistics. In addition, multiple-point histograms only provide a statistical comparison of patterns regardless of the connectivity. Thus, we propose to characterize the static connectivity from a set of 12 indicators based on the connected components of the realizations. Some indicators describe the spatial repartition of the connected components, others their global shape or their topology through the component skeletons. We also gather all the indicators into dissimilarity values to easily compare hundreds of realizations. Heat maps and multidimensional scaling then facilitate the dissimilarity analysis. The application to a synthetic case highlights the impact of the grid size on the connectivity and the indicators. Such impact disappears when comparing samples of the realizations with the same sizes. The method is then able to rank realizations from a referring model based on their static connectivity. This application also gives rise to more practical advices. The multidimensional scaling appears as a powerful visualization tool, but it also induces dissimilarity misrepresentations: it should always be interpreted cautiously with a look at the point position confidence. The heat map displays the real dissimilarities and is more appropriate for a detailed analysis. The comparison with a multiple-point histogram method shows the benefit of the connected components: the large-scale connectivity seems better characterized by our indicators, especially the skeleton indicators.Montrer plus