Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Odor-based real-time detection and identification of pests and diseases attacking crop plants
    (2024-07-29) ; ;
    Terunobu Akiyama
    ;
    ; ;
    Kosuke Minami
    ;
    ;
    Genki Yoshikawa
    ;
    ;
    Felipe Lopez-Hilfiker
    ;
    ;
    Luca Cappellin
    ;
    Plants respond to attacks by herbivores and pathogens by releasing specific blends of volatile compounds and the resulting odor can be specific for the attacking species. We tested if these odors can be used to monitor the presence of pests and diseases in agriculture. Two methods were used, one employing piezoresistive membrane surface stress sensors and the other proton-transfer reaction mass spectrometry. Under laboratory conditions, both techniques readily distinguished between maize plants that were either undamaged, infested by caterpillars, or infected by a fungal pathogen. Under outdoor conditions, the spectrometer could be used to recognize plants with simulated caterpillar damage with about 80% accuracy. Further finetuning of these techniques should lead to the development of odor-sensing mobile devices capable of alerting farmers to the presence and exact location of pests and diseases in their fields.
  • Publication
    Accès libre
    Mycorrhizal Fungi Enhance Resistance to Herbivores in Tomato Plants with Reduced Jasmonic Acid Production
    Arbuscular mycorrhizal (AM) fungi favor plant growth by improving nutrient acquisition, but also by increasing their resistance against abiotic and biotic stressors, including herbivory. Mechanisms of AM fungal mediated increased resistance include a direct effect of AM fungi on plant vigor, but also a manipulation of the hormonal cascades, such as the systemic activation of jasmonic acid (JA) dependent defenses. However, how AM fungal inoculation and variation in the endogenous JA production interact to produce increased resistance against insect herbivores remains to be further elucidated. To address this question, three genotypes of Solanum lycopersicum L., a JA-biosynthesis deficient mutant, a JA over-accumulating mutant, and their wild-type were either inoculated with AM fungi or left un-inoculated. Plant growth-related traits and resistance against Spodoptera littoralis (Boisduval) caterpillars, a major crop pest, were measured. Overall, we found that deficiency in JA production reduced plant development and were the least resistant against S. littoralis. Moreover, AM fungi increased plant resistance against S. littoralis, but such beneficial effect was more pronounced in JA-deficient plant than on JA over-accumulating plants. These results highlight that AM fungi-driven increased plant resistance is negatively affected by the ability of plants to produce JA and that AM fungi complement JA-mediated endogenous plant defenses in this system.