Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Laboratory and field trials reveal the potential of a gel formulation of entomopathogenic nematodes for the biological control of fall armyworm caterpillars (Spodoptera frugiperda)
    (2022-12-1) ;
    Bazagwira, Didace
    ;
    Guenat, Julie Morgane
    ;
    ;
    Karangwa, Patrick
    ;
    Mukundwa, Ishimwe Primitive
    ;
    Kajuga, Joellee
    ;
    ;
    Toepfer, Stefan
    ;
    The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) can cause tremendous yield losses in maize. Its invasion into Africa and Asia has dramatically increased the use of insecticides in maize agro-ecosystems. Safe, effective and readily available alternatives are urgently needed. Entomopathogenic nematodes (EPN) represent a promising and sustainable option to control fall armyworm caterpillars on maize. Commonly used against soil insect pests, EPN can also be applied to control above-ground pests if formulated appropriately. We explored the possibility to control FAW by incorporating the EPN species Steinernema carpocapsae into protective formulations that can be easily applied into the whorl of maize plants, where the caterpillars mostly feed. We tested this approach in laboratory cage experiments as well as in field trials. In the laboratory, treating maize plants with a low dose of S. carpocapsae (3000 infective juveniles per plant) formulated in a carboxymethyl cellulose (CMC) gel caused 100% mortality of FAW caterpillars and substantially reduced plant damage, whereas EPN applied in water or a surfactant-polymer-formulation (SPF) caused 72% and 94% mortality, respectively. Under field conditions, one-time treatments with S. carpocapsae applied in water, SPF or CMC decreased plant damage, but only the EPN-gel formulation significantly reduced FAW infestation. As compared to control, about 40% fewer caterpillars were found on plants treated with EPN formulated in the gel. Notably, the EPN-gel formulation was as effective as a standard dose of cypermethrin, a pyrethroid insecticide commonly used against FAW, in reducing FAW infestation. Repeated applications may be needed to reduce re-infestations by FAW across a whole cropping season depending on the local maize phenology and pest dynamics. These findings demonstrate that EPN, when properly formulated, are excellent candidates for the biological control of FAW, and can be a safe and sustainable alternative to synthetic insecticides.
  • Publication
    Accès libre
    Belowground and aboveground herbivory differentially affect the transcriptome in roots and shoots of maize
    Plants recognize and respond to feeding by herbivorous insects by upregulating their local and systemic defenses. While defense induction by aboveground herbivores has been well studied, far less is known about local and systemic defense responses against attacks by belowground herbivores. Here, we investigated and compared the responses of the maize transcriptome to belowground and aboveground mechanical damage and infestation by two well-adapted herbivores: the soil-dwelling western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and the leaf- chewing fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). In responses to both herbivores, maize plants were found to alter local transcription of genes involved in phytohormone signaling, primary and secondary metabolism. Induction by real herbivore damage was considerably stronger and modified the expression of more genes than mechanical damage. Feeding by the corn rootworm had a strong impact on the shoot transcriptome, including the activation of genes involved in defense and development. By contrast, feeding by the fall armyworm induced only few transcriptional changes in the roots. In conclusion, feeding by a leaf chewer and a root feeder differentially affects the local and systemic defense of maize plants. Besides revealing clear differences in how maize plants respond to feeding by these specialized herbivores, this study reveals several novel genes that may play key roles in plant–insect interactions and thus sets the stage for in depth research into the mechanism that can be exploited for improved crop protection.
  • Publication
    Accès libre
    Evolutionary changes in an invasive plant support the defensive role of plant volatiles
    (2021-10-29)
    Lin, Tiantian
    ;
    Vrieling, Klaas
    ;
    ;
    Klinkhamer, Peter G. L.
    ;
    Lou, Yonggen
    ;
    Bekooy, Leon
    ;
    ; ; ;
    Desurmont, Gaylord A.
    It is increasingly evident that plants interact with their outside world through the production of volatile organic compounds, but whether the volatiles have evolved to serve in plant defense is still a topic of considerable debate.Unharmed leaves constitutively release small amounts of volatiles, but when the leaves are damaged by herbivorous arthropods, they emit substantially more volatiles. These herbivore-induced plant volatiles (HIPVs) attract parasitoids and predators that kill insect herbivores, and this can benefit the plants.As yet, however, there is no tangible evolutionary evidence that this tritrophic interplay contrib- utes to the selection forces that have shaped the volatile emissions of plants.With this in mind, we investigated the evolutionary changes in volatile emissions in invasive common ragwort and the respective defensive roles of its constitutive and inducible volatiles. This Eurasian plant has invaded other continents, where it evolved for many generations in the absence of specialized herbivores and their natural enemies. We found that, compared to native ragworts, invasive plants release higher levels of constitutive volatiles but considerably lower levels of herbivore-induced volatiles. As a consequence, invasive ragwort is more attractive to a specialist moth but avoided by an unadapted generalist moth. Importantly, conforming to the indirect defense hypothesis, a specialist parasitoid was much more attracted to caterpillar-damaged native ragwort, which was reflected in higher parasitism rates in a field trial. The evolution of foliar volatile emissions appears to be indeed driven by their direct and indirect roles in defenses against insects.