Options
Turlings, Ted
Nom
Turlings, Ted
Affiliation principale
Fonction
Professeur.e ordinaire
Email
ted.turlings@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 7 sur 7
- PublicationMétadonnées seulementAttractiveness of constitutive and herbivore-induced sesquiterpene blends of maize to the parasitic wasp(2011)
;Fontana, A.; ;Fantaye, C. A.; ;Degenhardt, JörgGershenzon, JonathanPlant volatile compounds induced by herbivore attack have been demonstrated to provide a signal to herbivore enemies such as parasitic wasps that use these volatiles to locate their hosts. However, in addition to herbivore-induced volatiles, plants often release volatiles constitutively. We assessed the interaction between herbivore-induced and constitutively released volatiles of maize in the attraction of the wasp Cotesia marginiventris that parasitizes herbivorous lepidopteran larvae feeding on maize. Experiments were carried out with olfactometers in which the sources of volatiles were transgenic Arabidopsis thaliana plants overexpressing maize sesquiterpene synthases that produce blends of herbivore-induced or constitutive compounds. We found that the constitutive volatiles of maize terpene synthase 8 (TPS8) were attractive to C. marginiventris, just like the herbivore-induced volatiles of TPS10 studied earlier. A mixture of both the TPS8 and TPS10 volatile blends, however, was more effective in parasitoid attraction, indicating that constitutively released sesquiterpenes enhance the attraction of those induced by herbivores. While C. marginiventris did not distinguish among the volatiles of TPS8, TPS10, nor those of another maize sesquiterpene synthase (TPS5), when these blends were combined, their attractiveness to the wasp appeared to increase with the complexity of the blend. - PublicationMétadonnées seulementEffects of rewarding and unrewarding experiences on the response to host-induced plant odors in the gereralist parasitoid(2010)
; ;Ricard, I. ;Davison, A. C.Associative learning is known to modify foraging behavior in numerous parasitic wasps. This is in agreement with optimal foraging theory, which predicts that the wasps will adapt their responses to specific cues in accordance with the rewards they receive while perceiving these cues. Indeed, the generalist parasitoid Cotesia marginiventris shows increased attraction to a specific plant odor after perceiving this odor during contact with hosts. This positive associative learning is common among many parasitoids, but little is known about the effects of unrewarding host searching events on the attractiveness of odors. To study this, preferences of female C. marginiventris for herbivore-induced odors of three plant species were tested in a six-arm olfactometer after the wasps perceived one of these odors either i) without contacting any caterpillars, ii) while contacting the host caterpillar Spodoptera littoralis, or iii) while contacting the non-host caterpillar Pieris rapae. The results confirm the effects of positive associative learning, but showed no changes in innate responses to the host-induced odors after "negative" experiences. Hence, a positive association is made during an encounter with hosts, but unsuccessful host-foraging experiences do not necessarily lead to avoidance learning in this generalist parasitoid. - PublicationMétadonnées seulementThe role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps(2006)
;D'Alessandro, Marco; ;Triponez, YannAfter herbivore attack, plants release a plethora of different volatile organic compounds (VOCs), which results in odor blends that are attractive to predators and parasitoids of these herbivores. VOCs in the odor blends emitted by maize plants (Zea mays) infested by lepidopteran larvae are well characterized. They are derived from at least three different biochemical pathways, but the relative importance of each pathway for the production of VOCs that attract parasitic wasps is unknown. Here, we studied the importance of shikimic acid derived VOCs for the attraction of females of the parasitoids Cotesia marginiventris and Microplitis rufiventris. By incubating caterpillar-infested maize plants in glyphosate, an inhibitor of the 5-enolpyruvylshikimate-3-phospate (EPSP) synthase, we obtained induced odor blends with only minute amounts of shikimic acid derived VOCs. In olfactometer bioassays, the inhibited plants were as attractive to naive C. marginiventris females as control plants that released normal amounts of shikimic acid derived VOCs, whereas naive M. rufiventris females preferred inhibited plants to control plants. By adding back synthetic indole, the quantitatively most important shikimic acid derived VOC in induced maize odors, to inhibited plants, we showed that indole had no effect on the attraction of C. marginiventris and that M. rufiventris preferred blends without synthetic indole. Exposing C. marginiventris females either to odor blends of inhibited or control plants during oviposition experiences shifted their preference in subsequent olfactometer tests in favor of the experienced odor. Further learning experiments with synthetic indole showed that C. marginiventris can learn to respond to this compound, but that this does not affect its choices between natural induced blends with or without indole. We hypothesize that for naive wasps the attractiveness of an herbivore-induced odor blend is reduced due to masking by nonattractive compounds, and that during oviposition experiences in the presence of complex odor blends, parasitoids strongly associate some compounds, whereas others are largely ignored. - PublicationMétadonnées seulementFungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids(2006)
;Rostas, Michael ;Ton, Jurriaan; Plants attacked by insects release volatile compounds that attract the herbivores' natural enemies. This so-called indirect defense is plastic and may be affected by an array of biotic and abiotic factors. We investigated the effect of fungal infection as a biotic stress agent on the emission of herbivore-induced volatiles and the possible consequences for the attraction of two parasitoid species. Maize seedlings that were simultaneously attacked by the fungus Setosphaeria turcica and larvae of Spodoptera littoralis emitted a blend of volatiles that was qualitatively similar to the blend emitted by maize that was damaged by only the herbivore, but there was a clear quantitative difference. When simultaneously challenged by fungus and herbivore, the maize plants emitted in total 47% less of the volatiles. Emissions of green leaf volatiles were unaffected. In a six-arm olfactometer, the parasitoids Cotesia marginiventris and Microplitis rufiventris responded equally well to odors of herbivore-damaged and fungus- and herbivore-damaged maize plants. Healthy and fungus-infected plants were not attractive. An additional experiment showed that the performance of S. littoralis caterpillars was not affected by the presence of the pathogen, nor was there an effect on larvae of M. rufiventris developing inside the caterpillars. Our results confirm previous indications that naive wasps may respond primarily to the green leaf volatiles. - PublicationMétadonnées seulementAntennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata)(2005)
; ;Pickett, John A ;Wadhams, Lester J. ;Birkett, Michael AMany parasitic wasps are attracted to volatiles that are released by plants when attacked by potential hosts. The attractiveness of these semiochernicals from damaged plants has been demonstrated in many tritrophic systems, but the physiological mechanisms underlying the insect responses are poorly understood. We recorded the antennal perception by three parasitoids (Cotesia marginiventris, Microplitis rufiventris, and Campoletis sonorensis) to volatiles emitted by maize, cowpea, and cotton plants after attack by the common caterpillar pest Spodoptera littoralis. Gas chromatography-electroantennography (GC-EAG) recordings showed that wasps responded to many, but not all, of the compounds present at the physiologically relevant levels tested. Interestingly, some minor compounds, still unidentified, elicited strong responses from the wasps. These results indicate that wasps are able to detect many odorant compounds released by the plants. It remains to be determined how this information is processed and leads to the specific behavior of the parasitoids. - PublicationMétadonnées seulementThe role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles(2005)
;Hoballah, Maria ElenaThe odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naive and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals. - PublicationMétadonnées seulementExperimental evidence that plants under caterpillar attack may benefit from attracting parasitoids(2001)
;Hoballah, Maria ElenaHerbivore-induced plant volatiles have been suggested to function as indirect defence signals that attract natural enemies of herbivores. Several insect parasitoids are known to exploit such plant-provided cues to locate hosts. It is unclear if individual plants benefit from the action of parasitoids. We investigated this question in maize plants under attack by Spodoptera littoralis larvae and found that parasitization by the endoparasitoids Cotesia marginiventris and Campoletis sonorensis significantly reduced feeding and weight gain in the host larvae. As a result, young maize plants attacked by a single parasitized larva suffered much less feeding damage and, at maturity, produced about 30% more seed than plants that were attacked by an unparasitized larva. Such fitness benefits may have contributed to selection pressures that shaped the evolution of herbivore-induced indirect defence signals in plants.