Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields
    (2012)
    von Mérey, Georg
    ;
    ;
    de Lange, Elvira S.
    ;
    ;
    Mahuku, George
    ;
    Lopez Valdez, Raymundo
    ;
    ;
    D’Alessandro, Marco
    Synthetic elicitors can be used to induce resistance in plants against pathogens and arthropod herbivores. Such compounds may also change the emission of herbivore-induced plant volatiles, which serve as important cues for parasitic wasps to locate their hosts. Therefore, the use of elicitors in the field may affect biological control of insect pests. To test this, we treated maize seedlings growing in a subtropical field in Mexico with methyl jasmonate (MeJA), an elicitor of defense responses against many insects, and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), an elicitor of resistance against certain pathogens. Volatile emission, herbivore infestation, pathogen infection, and plant performance (growth and grain yield) of treated and untreated maize plants were measured. Application of BTH slightly reduced volatile emission in maize, while MeJA increased the emission compared to control treatments. Despite the apparent changes in volatile emissions, the elicitor application did not consistently affect infestation by Spodoptera frugiperda larvae, the main insect pest found on the maize seedlings, and had only marginal effects on parasitism rates. Similarly, there were no treatment effects on infestation by other herbivores and pathogens. Results for the six replications that stretched over one summer and one winter season were highly variable, with parasitism rates and the species composition of the parasitoids differing significantly between seasons. This variability, as well as the severe biotic and abiotic stresses on young seedlings might explain why we measured only slight effects of elicitor application on pest incidence and biological control in this specific field study. Indeed, an additional field experiment under milder and more standardized conditions revealed that BTH induced significant resistance against Bipolaris maydis, a major pathogen in the experimental maize fields. Similar affects can be expected for herbivory and parasitism rates.
  • Publication
    Accès libre
    Population genetic structure of two primary parasitoids of Spodoptera frugiperda (Lepidoptera), Chelonus insularis and Campoletis sonorensis (Hymenoptera): to what extent is the host plant important?
    (2010)
    Jourdie, Violaine
    ;
    Alvarez, Nadir
    ;
    Molina-Ochoa, Jaime
    ;
    Williams, Trevor
    ;
    Bergvinson, David
    ;
    ; ;
    Franck, Pierre
    Plant chemistry can strongly influence interactions between herbivores and their natural enemies, either by providing volatile compounds that serve as foraging cues for parasitoids or predators, or by affecting the quality of herbivores as hosts or prey. Through these effects plants may influence parasitoid population genetic structure. We tested for a possible specialization on specific crop plants in Chelonus insularis and Campoletis sonorensis, two primary parasitoids of the fall armyworm, Spodoptera frugiperda. Throughout Mexico, S. frugiperda larvae were collected from their main host plants, maize and sorghum and parasitoids that emerged from the larvae were used for subsequent comparison by molecular analysis. Genetic variation at eight and 11 microsatellites were respectively assayed for C. insularis and C. sonorensis to examine isolation by distance, host plant and regional effects. Kinship analyses were also performed to assess female migration among host-plants. The analyses showed considerable within population variation and revealed a significant regional effect. No effect of host plant on population structure of either of the two parasitoid species was found. Isolation by distance was observed at the individual level, but not at the population level. Kinship analyses revealed significantly more genetically related—or kin—individuals on the same plant species than on different plant species, suggesting that locally, mothers preferentially stay on the same plant species. Although the standard population genetics parameters showed no effect of plant species on population structure, the kinship analyses revealed that mothers exhibit plant species fidelity, which may speed up divergence if adaptation were to occur.