Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Tritrophic interactions on cultivated maize and its wild ancestor "teosinte"
    (2014)
    De Lange, Elvira Simone
    ;
    Modern maize plants (Zea mays ssp. mays, Poaceae) are characterized by large cobs that contain juicy grains, although they have not always had these characteristics. Approximately 9000 years ago, maize was domesticated from teosinte (Z. mays ssp. parviglumis), its closest wild ancestor, which produces much less and much smaller seeds. Teosinte still grows in the wild in Mexico, while maize is produced all over the world. Continuous selection for improved yield and quality has had a cost for the plant in terms of the loss or alteration of other potentially useful traits, such as resistance to pathogens and herbivorous insects. This thesis focuses on the resistance of maize and teosinte against insect pests, in particular with respect to the emission of herbivore-induced volatiles. This feature is considered an indirect defense trait, as the volatiles can betray the presence of prey or hosts to predators and parasitoids, natural enemies of herbivorous insects. Among these natural enemies are parasitoid wasps, of which females have an ovipositor with which they can lay single or multiple eggs in individual hosts. When the wasp larvae develop inside the host they will eventually kill it, potentially benefitting the plant.
    At first, we assessed in nature which insects occur on teosinte. Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is reported as an important maize pest in the Americas and is frequently attacked by many species of parasitoids. However, little is known about the presence of this herbivore and its associated parasitoids on teosinte.
    In a laboratory setting, we then assessed whether maize and teosinte emit a similar blend of volatiles when induced by lepidopteran herbivores. We also evaluated the attractiveness of the odor blends to females of two species of parasitoid wasps. Although the odor blends appeared similar upon gas chromatography analysis, the foraging parasitoids responded differentially to them. We obtained similar results when testing real plants and extracts of collected odors, indicating that these extracts can be used to identify the key compounds that are responsible for parasitoid attraction.
    There is surprisingly little field evidence for fitness benefits for plants due to the action of natural enemies. This is still an important point in the discussion on the possible indirect defense role of inducible plant volatiles, especially in the case of parasitoids that, unlike predators, do not directly kill their hosts. Therefore, we evaluated how parasitoid wasps can affect plant performance in a semi-natural setting in Mexico. The presence of parasitoid wasps in field tents containing teosinte plants and fall armyworm significantly reduced herbivore damage, which, for the smallest plants, resulted in a reduction in plant mortality. These findings support the notion that plants may benefit from the presence of parasitoids and may help to resolve the current debate on the defensive function of herbivore-induced volatiles.
    To further explore the importance of volatiles for the attraction of parasitoids under field conditions, we studied maize lox10 mutants, impaired in the biosynthesis of green leaf volatiles (GLVs). These volatiles, responsible for the smell of cut grass, are commonly emitted by plants when wounded or attacked by herbivores. Previously, laboratory studies have shown that GLVs can be used as foraging cues by predators and parasitoids. However, our results imply that GLVs are not of key importance for parasitoid attraction in the field.
    Collectively, these studies provide novel insights into the importance of herbivore-induced volatiles for the attraction of parasitoid wasps, and their indirect importance for plant growth and survival. We identified differences between maize and its wild ancestor, teosinte, with respect to the attraction of parasitoids that could possibly be exploited for ecologically sound methods to better protect maize against insect pests.
  • Publication
    Accès libre
    Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields
    (2012)
    von Mérey, Georg
    ;
    ;
    de Lange, Elvira S.
    ;
    ;
    Mahuku, George
    ;
    Lopez Valdez, Raymundo
    ;
    ;
    D’Alessandro, Marco
    Synthetic elicitors can be used to induce resistance in plants against pathogens and arthropod herbivores. Such compounds may also change the emission of herbivore-induced plant volatiles, which serve as important cues for parasitic wasps to locate their hosts. Therefore, the use of elicitors in the field may affect biological control of insect pests. To test this, we treated maize seedlings growing in a subtropical field in Mexico with methyl jasmonate (MeJA), an elicitor of defense responses against many insects, and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), an elicitor of resistance against certain pathogens. Volatile emission, herbivore infestation, pathogen infection, and plant performance (growth and grain yield) of treated and untreated maize plants were measured. Application of BTH slightly reduced volatile emission in maize, while MeJA increased the emission compared to control treatments. Despite the apparent changes in volatile emissions, the elicitor application did not consistently affect infestation by Spodoptera frugiperda larvae, the main insect pest found on the maize seedlings, and had only marginal effects on parasitism rates. Similarly, there were no treatment effects on infestation by other herbivores and pathogens. Results for the six replications that stretched over one summer and one winter season were highly variable, with parasitism rates and the species composition of the parasitoids differing significantly between seasons. This variability, as well as the severe biotic and abiotic stresses on young seedlings might explain why we measured only slight effects of elicitor application on pest incidence and biological control in this specific field study. Indeed, an additional field experiment under milder and more standardized conditions revealed that BTH induced significant resistance against Bipolaris maydis, a major pathogen in the experimental maize fields. Similar affects can be expected for herbivory and parasitism rates.
  • Publication
    Accès libre
    Population genetic structure of two primary parasitoids of Spodoptera frugiperda (Lepidoptera), Chelonus insularis and Campoletis sonorensis (Hymenoptera): to what extent is the host plant important?
    (2010)
    Jourdie, Violaine
    ;
    Alvarez, Nadir
    ;
    Molina-Ochoa, Jaime
    ;
    Williams, Trevor
    ;
    Bergvinson, David
    ;
    ; ;
    Franck, Pierre
    Plant chemistry can strongly influence interactions between herbivores and their natural enemies, either by providing volatile compounds that serve as foraging cues for parasitoids or predators, or by affecting the quality of herbivores as hosts or prey. Through these effects plants may influence parasitoid population genetic structure. We tested for a possible specialization on specific crop plants in Chelonus insularis and Campoletis sonorensis, two primary parasitoids of the fall armyworm, Spodoptera frugiperda. Throughout Mexico, S. frugiperda larvae were collected from their main host plants, maize and sorghum and parasitoids that emerged from the larvae were used for subsequent comparison by molecular analysis. Genetic variation at eight and 11 microsatellites were respectively assayed for C. insularis and C. sonorensis to examine isolation by distance, host plant and regional effects. Kinship analyses were also performed to assess female migration among host-plants. The analyses showed considerable within population variation and revealed a significant regional effect. No effect of host plant on population structure of either of the two parasitoid species was found. Isolation by distance was observed at the individual level, but not at the population level. Kinship analyses revealed significantly more genetically related—or kin—individuals on the same plant species than on different plant species, suggesting that locally, mothers preferentially stay on the same plant species. Although the standard population genetics parameters showed no effect of plant species on population structure, the kinship analyses revealed that mothers exhibit plant species fidelity, which may speed up divergence if adaptation were to occur.