Voici les éléments 1 - 10 sur 13
  • Publication
    Accès libre
    Comparative Screening of Mexican, Rwandan and Commercial Entomopathogenic Nematodes to Be Used against Invasive Fall Armyworm, Spodoptera frugiperda
    (2022-2-16) ;
    De Gianni, Lara
    ;
    Machado, Ricardo A. R.
    ;
    ;
    Bernal, Julio S.
    ;
    Karangwa, Patrick
    ;
    Kajuga, Joelle
    ;
    Waweru, Bancy
    ;
    Bazagwira, Didace
    ;
    ;
    Toepfer, Stefan
    ;
    The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond.
  • Publication
    Métadonnées seulement
    Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions
    (2014)
    D'Alessandro, Marco
    ;
    ;
    Ton, Jurriaan
    ;
    Brandenburg, Anna
    ;
    Karlen, Danielle
    ;
    ;
    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E.?aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E.?aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E.?aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.
  • Publication
    Métadonnées seulement
    Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions
    (2013)
    D'Alessandro, Marco
    ;
    ;
    Ton, Jurriaan
    ;
    Brandenburg, Anna
    ;
    Karlen, Danielle
    ;
    ;
    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E.?aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E.?aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E.?aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.
  • Publication
    Métadonnées seulement
    The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes (Marschner Review for the "Rhizosphere 3" Special Issue)
    Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.
  • Publication
    Métadonnées seulement
    A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density-dependent manner
    (2012)
    Robert, Christelle Aurélie Maud
    ;
    ;
    Hibbard, Bruce Elliott
    ;
    French, B. W.
    ;
    ;
    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground plant-insect interactions, little is known about the prevalence and consequences of induced responses below-ground. 2. A recent study suggested that feeding by the specialist root herbivore Diabrotica virgifera virgifera makes maize roots more susceptible to conspecifics. To better understand this phenomenon, we conducted a series of experiments to study the behavioural responses and elucidate the underlying biochemical mechanisms. 3. We found that D. virgifera benefitted from feeding on a root system in groups of intermediate size (39 larvae/plant in the laboratory), whereas its performance was reduced in large groups (12 larvae/plant). Interestingly, the herbivore was able to select host plants with a suitable density of conspecifics by using the induced plant volatile (E)-beta-caryophyllene in a dose-dependent manner. Using a split root experiment, we show that the plant-induced susceptibility is systemic and, therefore, plant mediated. Chemical analyses on plant resource reallocation and defences upon herbivory showed that the systemic induced-susceptibility is likely to stem from a combination of (i) increased free amino acid concentrations and (ii) relaxation of defence inducibility. 4. These findings show that herbivores can use induced plant volatiles in a density-dependent manner to aggregate on a host plant and change its metabolism to their own benefit. Our study furthermore helps to explain the remarkable ecological success of D. virgifera in maize fields around the world.
  • Publication
    Métadonnées seulement
    A specialist root herbivore exploits defensive metabolites to locate nutritious tissues
    (2012)
    Robert, Christelle Aurélie Maud
    ;
    ; ;
    Marti, Guillaume
    ;
    Doyen, G. R.
    ;
    ;
    Gaillard, Mickaël David Philippe
    ;
    Köllner, Tobias G.
    ;
    Giron, David
    ;
    Body, Mélanie
    ;
    Babst, Benjamin A.
    ;
    Ferrieri, Richard A.
    ;
    ;
    The most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterred from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots.
  • Publication
    Métadonnées seulement
    Herbivore-induced plant volatiles mediate host selection by a root herbivore
    (2012)
    Robert, Christelle Aurélie Maud
    ;
    ;
    Duployer, M.
    ;
    ;
    Doyen, G. R.
    ;
    In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D similar to virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S similar to littoralis. We identified (E)-beta-caryophyllene, which is induced by D similar to virgifera, and ethylene, which is suppressed by S similar to littoralis, as two signals used by D similar to virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.
  • Publication
    Métadonnées seulement
    Induction of root-resistance by leaf-herbivory follows a vertical gradient
    (2011) ;
    Robert, Christelle Aurélie Maud
    ;
    Leaf-herbivory can lead to systemic changes in root metabolism and resistance. As yet, it is unknown if these changes affect the whole root system, or if they are more pronounced in the upper root parts, which are closer to the actual site of attack. As this spatial aspect may be an important determinant of the interactions that can be expected to occur within the rhizosphere, we investigated if leaf-herbivore induced root resistance differs between upper and lower roots of maize. We also tested if the density of leaf-herbivores correlates with intensity of the root response. The systemic increase in resistance was found to be more pronounced in the upper than the lower roots and was independent of leaf herbivore density. The results suggest that there is a vertical gradient in the strength of the root response following leaf-herbivory, and that soil organisms living closer to the surface may be more affected by leaf-attack than the ones living in deeper soil layers.
  • Publication
    Métadonnées seulement
    Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest
    (2010) ;
    Baroni, Mariane
    ;
    Toepfer, Stefan
    ;
    Kuhlmann, Ulrich
    ;
    The efficacy of natural enemies as biological control agents against insect pests can theoretically be enhanced by artificial selection for high responsiveness to foraging cues. The recent discovery that maize roots damaged by the western corn rootworm (WCR) emit a key attractant for insect-killing nematodes has opened the way to explore whether a selection strategy can improve the control of root pests. The compound in question, (E)-beta-caryophyllene, is only weakly attractive to Heterorhabditis bacteriophora, one of the most infectious nematodes against WCR. To overcome this drawback, we used a six-arm below-ground olfactometer to select for a strain of H. bacteriophora that is more readily attracted to (E)-beta-caryophyllene. After six generations of selection, the selected strain responded considerably better and moved twice as rapidly towards a (E)-beta-caryophyllene source than the original strain. There was a minor trade-off between this enhanced responsiveness and nematode infectiveness. Yet, in subsequent field tests, the selected strain was significantly more effective than the original strain in reducing WCR populations in plots with a maize variety that releases (E)-beta-caryophyllene, but not in plots with a maize variety that does not emit this root signal. These results illustrate the great potential of manipulating natural enemies of herbivores to improve biological pest control.
  • Publication
    Accès libre
    Evaluating the Induced-Odour Emission of a Bt Maize and its Attractiveness to Parasitic Wasps
    The current discussion on the safety of transgenic crops includes their effects on beneficial insects, such as parasitoids and predators of pest insects. One important plant trait to consider in this context is the emission of volatiles in response to herbivory. Natural enemies use the odours that result from these emissions as cues to locate their herbivorous prey and any significant change in these plant-provided signals may disrupt their search efficiency. There is a need for practical and reliable methods to evaluate transgenic crops for this and other important plant traits. Moreover, it is imperative that such evaluations are done in the context of variability for these traits among conventional genotypes of a crop. For maize and the induction of volatile emissions by caterpillar feeding this variability is known and realistic comparisons can therefore be made. Here we used a six-arm olfactometer that permits the simultaneous collection of volatiles emitted by multiple plants and testing of their attractiveness to insects. With this apparatus we measured the induced odour emissions of Bt maize (Bt11, N4640Bt) and its near-isogenic line (N4640) and the attractiveness of these odours to Cotesia marginiventris and Microplitis rufiventris, two important larval parasitoids of common lepidopteran pests. Both parasitoid species were strongly attracted to induced maize odour and neither wasp distinguished between the odours of the transgenic and the isogenic line. Also wasps that had previously experienced one of the odours during a successful oviposition divided their choices equally between the two odours. However, chemical analyses of collected odours revealed significant quantitative differences. The same 11 compounds dominated the blends of both genotypes, but the isogenic line released a larger amount of most of these. These differences may be due to altered resource allocation in the transgenic line, but it had no measurable effect on the wasps’ behaviour. All compounds identified here had been previously reported for maize and the differential quantities in which they were released fall well within the range of variability observed for other maize genotypes.