Voici les éléments 1 - 3 sur 3
  • Publication
    Métadonnées seulement
    The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies
    (: Academic Press Inc, 1998) ;
    Bernasconi, Marco
    ;
    Bertossa, Rinaldo
    ;
    Bigler, Franz
    ;
    Caloz, Genevieve
    ;
    Dorn, Silvia
    In order to find their prey natural enemies of herbivores often make effective use of plant volatiles that are emitted by plants on which the herbivores have been feeding. The phenomenon of herbivore-induced emissions of attractants has been well investigated for mite-plant interactions and for interactions between leaf feeding caterpillars and plants. Herbivore-induced emissions of chemical signals appear to be common in plants, but little is known about induction by herbivores that have different feeding habits. We obtained more knowledge on this by comparing the volatile emissions induced in maize plants by a folivorous caterpillar (Spodoptera littoralis), a stemborer (Ostrinia nubilalis), and an aphid (Rhopalosiphum maidis). As controls we also measured the emissions of healthy, undamaged plants and plants that were mechanically damaged and then treated with caterpillar regurgitate. Volatiles were collected twice daily for 2 h over a 3-day period after initial infestation or mechanical damage. Quantitatively, the plants infested with S. littoralis emitted by far the most. Their emissions started several hours after initial damage, lasted for the 3 days, and were the highest on the third day. The volatile profile was the same for the regurgitate-treated plants, but here the emissions dropped rapidly after the first day. The plants infested by O. nubilalis emitted the same blend of volatiles, but in much lower quantities, In addition to the known induced maize volatiles, the Ostrinia-damaged plants emitted some highly volatile, still unidentified compounds, which may be specific for the frass of this insect or emitted from the damaged plant stem. The aphids induced no measurable emissions of volatiles in the maize, even after heavy infestation. This is perhaps because several aphids, including R. maidis, barely damage the plant cells, and may not trigger a plant response. These findings suggest that induction of volatiles is the result of cell tissue damage, particularly to the leaves of the plant. This should have consequences also for the search strategies employed by the natural enemies of the respective herbivores, It can be expected that enemies of stemborers use some highly volatile compounds in addition to the known induced compounds. Natural enemies of some aphids may have to resort to other foraging cues, as the plant appears to provide them with no or very little olfactory information. (C) 1998 Academic Press.
  • Publication
    Métadonnées seulement
    How caterpillar-damaged plants protect themselves by attracting parasitic wasps
    (: Natl Acad Sciences, 1994) ;
    Loughrin, John H
    ;
    McCall, Philip J
    ;
    Rose, Ursula S R
    ;
    Lewis, W Joe
    ;
    Tumlinson, James H
    Parasitic and predatory arthropods often prevent plants from being severely damaged by killing herbivores as they feed on the plants. Recent studies show that a variety of plants, when injured by herbivores, emit chemical signals that guide natural enemies to the herbivores, It is unlikely that herbivore-damaged plants initiate the production of chemicals solely to attract parasitoids and predators, The signaling role probably evolved secondarily from plant responses that produce toxins and deterrents against herbivores and antibiotics against pathogens, To effectively function as signals for natural enemies, the emitted volatiles should be clearly distinguishable from background odors, specific for prey or host species that feed on the plant, and emitted at times when the natural enemies forage, Our studies on the phenomena of herbivore-induced emissions of volatiles in corn and cotton plants and studies conducted by others indicate that (i) the clarity of the volatile signals is high, as they are unique for herbivore damage, produced in relatively large amounts, and easily distinguishable from background odors; (ii) specificity is limited when different herbivores feed on the same plant species but high as far as odors emitted by different plant species and genotypes are concerned; (iii) the signals are timed so that they are mainly released during the daytime, when natural enemies tend to forage, and they wane slowly after herbivory stops.
  • Publication
    Métadonnées seulement
    The chemistry of eavesdropping, alarm, and deceit
    (: Natl Acad Sciences, 1994)
    Stowe, Mark K
    ;
    ;
    Loughrin, John H
    ;
    Lewis, W Joe
    ;
    Tumlinson, James H
    Arthropods that prey on or parasitize other arthropods frequently employ those chemical cues that reliably indicate the presence of their prey or hosts. Eavesdropping on the sex pheromone signals emitted to attract mates allows many predators and parasitoids to find and attack adult insects. The sex pheromones are also useful signals for egg parasitoids since eggs are frequently deposited on nearby plants soon after mating. When the larval stages of insects or other arthropods are the targets, a different foraging strategy is employed. The larvae are often chemically inconspicuous, but when they feed on plants the injured plants respond by producing and releasing defensive chemicals. These plant chemicals may also serve as ''alarm signals'' that are exploited by predators and parasitoids to locate their victims. There is considerable evidence that the volatile ''alarm signals'' are induced by interactions of substances from the herbivore with the damaged plant tissue. A very different strategy is employed by several groups of spiders that remain stationary and send out chemical signals that attract prey, Some of these spiders prey exclusively on male moths. They attract the males by emitting chemicals identical to the sex pheromones emitted by female moths. These few examples indicate the diversity of foraging strategies of arthropod predators and parasitoids. It is likely that many other interesting chemically mediated interactions between arthropod hunters and their victims remain to be discovered. Increased understanding of these systems will enable us to capitalize on natural interactions to develop more ecologically sound, environmentally safe methods for biological control of insect pests of agriculture.