Voici les éléments 1 - 10 sur 30
  • Publication
    Accès libre
    Noise properties of an optical frequency comb from a SESAM-modelocked 1.5 µm solid-state laser stabilized to the 10E-13 level
    We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×1E−13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×1E−14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.
  • Publication
    Accès libre
    Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser
    (2011) ; ; ; ;
    Stumpf, Max C.
    ;
    ;
    Pekarek, Selina
    ;
    Oehler, Andreas E. H.
    ;
    ;
    Keller, Ursula
    ;
    We report the first full stabilization of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser (DPSSL) operating in the 1.5-μm spectral region. The stability of the comb is characterized in free-running and in phase-locked operation by measuring the noise properties of the carrier-envelope offset (CEO) beat, of the repetition rate, and of a comb line at 1558 nm. The high Q-factor of the semiconductor saturable absorber mirror (SESAM)-modelocked 1.5-µm DPSSL results in a low-noise CEO-beat, for which a tight phase lock can be much more easily realized than for a fiber comb. Using a moderate feedback bandwidth of only 5.5 kHz, we achieved a residual integrated phase noise of 0.72 rad rms for the locked CEO, which is one of the smallest values reported for a frequency comb system operating in this spectral region. The fractional frequency stability of the CEO-beat is 20‑fold better than measured in a standard self-referenced commercial fiber comb system and contributes only 10−15 to the optical carrier frequency instability at 1 s averaging time.
  • Publication
    Accès libre
    Frontiers in passively modelocked thin disk laser oscillators
    Baer, Cyrill R. E
    ;
    Heckl, Olivier H
    ;
    Saraceno, Clara J
    ;
    Schriber, Cinia
    ;
    Kränkel, Christian
    ;
    ;
    Keller, Ursula
    Semiconductor saturable absorber mirror (SESAM) mode-locked thin disk lasers define the state-of-the-art performance for high average power and high pulse energy femtosecond laser oscillators. To date pulse energies above 30 µJ and average powers above 140 W have been demonstrated. In this paper we review the achievements of mode-locked thin disk lasers in terms of average power and pulse energy. Stable mode locking requires single transverse mode operation even at the highest average power, which is challenging and therefore addressed in more detail. We then summarize our expectations on the main challenges and limitiations for the next generation of mode-locked thin disk laser oscillators with an average power above 500 W and pulse energies in excess of 100 µJ.
  • Publication
    Accès libre
    Ultrafast thin-disk laser with 80 µJ pulse energy and 242  W of average power
    Saraceno, Clara J
    ;
    Emaury, Florian
    ;
    Schriber, Cinia
    ;
    ;
    Golling, Matthias
    ;
    ;
    Keller, Ursula
    We present a semiconductor saturable absorber mirror (SESAM) mode-locked thin-disk laser generating 80 µJ of pulse energy without additional amplification. This laser oscillator operates at a repetition rate of 3.03 MHz and delivers up to 242 W of average output power with a pulse duration of 1.07 ps, resulting in an output peak power of 66 MW. In order to minimize the parasitic nonlinearity of the air inside the laser cavity, the oscillator was operated in a vacuum environment. To start and stabilize soliton mode locking, we used an optimized high-damage threshold, low-loss SESAM. With this new milestone result, we have successfully scaled the pulse energy of ultrafast laser oscillators to a new performance regime and can predict that pulse energies of several hundreds of microjoules will become possible in the near future. Such lasers are interesting for both industrial and scientific applications, for example for precise micromachining and attosecond science.
  • Publication
    Accès libre
    Dual-gain SESAM modelocked thin disk laser based on Yb:Lu2O3 and Yb:Sc2O3
    Schriber, Cinia
    ;
    Emaury, Florian
    ;
    Diebold, Andreas
    ;
    Link, Sandro
    ;
    Golling, Matthias
    ;
    Beil, Kolja
    ;
    Kränkel, Christian
    ;
    Saraceno, Clara J
    ;
    ;
    Keller, Ursula
    We present for the first time a SESAM-modelocked thin-disk laser (TDL) that incorporates two gain materials with different emission spectra in a single TDL resonator. The two gain media used in this experiment are the sesquioxide materials Yb:Lu2O3 and Yb:Sc2O3, which have their spectral emission peak displaced by ≈7 nm. We can benefit from a combined gain bandwidth that is wider than the one provided by a single gain material alone and still conserve the excellent thermal properties of each disk. In these first proof-of-principle experiments we demonstrate pulse durations shorter than previously achieved with the single gain material Yb:Lu2O3. The oscillator generates pulses as short as 103 fs at a repetition rate of 41.7 MHz and a center wavelength of around 1038 nm, with an average output power of 1.4 W. A different cavity layout provides pulses with a duration of 124 fs at an output power of 8.6 W. This dual-gain approach should allow for further power scaling of TDLs and these first results prove this method to be a promising new way to combine the record output-power performance of modelocked TDLs with short pulse durations.
  • Publication
    Accès libre
    Gigahertz frequency comb from a diode-pumped solid-state laser
    Klenner, Alexander
    ;
    ; ;
    Keller, Ursula
    We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard ƒ-to-2ƒ carrier-envelope offset (CEO) frequency ƒCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of ƒCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.
  • Publication
    Accès libre
    Self-referenceable frequency comb from an ultrafast thin disk laser
    Saraceno, Clara J
    ;
    Pekarek, Selina
    ;
    Heckl, Oliver H
    ;
    Baer, Cyrill R. E
    ;
    Schriber, Cinia
    ;
    Golling, Matthias
    ;
    Beil, Kolja
    ;
    Kränkel, Christian
    ;
    Huber, Günter
    ;
    Keller, Ursula
    ;
    We present the first measurement of the carrier envelope offset (CEO) frequency of an ultrafast thin disk laser (TDL). The TDL used for this proof-of-principle experiment was based on the gain material Yb:Lu2O3 and delivered 7 W of average power in 142-fs pulses, which is more than two times shorter than previously realized with this material. Using only 65 mW of the output of the laser, we generated a coherent octave-spanning supercontinuum (SC) in a highly nonlinear photonic crystal fiber (PCF). We detected the CEO beat signal using a standard ƒ-to-2ƒ interferometer, achieving a signal-to-noise ratio of >25 dB (3 kHz resolution bandwidth). The CEO frequency was tunable with the pump current with a slope of 33 kHz/mA. This result opens the door towards high-power frequency combs from unamplified oscillators. Furthermore, it confirms the suitability of these sources for future intralaser extreme nonlinear optics experiments such as high harmonic generation and VUV frequency comb generation from compact sources.
  • Publication
    Accès libre
    1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser
    Zhang, J. Y
    ;
    Oehler, A. E. H
    ;
    Resan, B
    ;
    Kurmulis, S
    ;
    Zhou, K. J
    ;
    Wang, Q
    ;
    Mangold, Mario
    ;
    ;
    Keller, Ursula
    ;
    Weingarten, K. J
    ;
    Hogg, R. A
    High pulse repetition rate (≥10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ∼2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices.
  • Publication
    Accès libre
    Noise properties of an optical frequency comb from a SESAM-modelocked 1.5 µm solid-state laser stabilized to the 10 -13 level
    We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×10−13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavitystabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8 × 1014− at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.