Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Soil properties and plant species can predict population size and potential introduction sites of the endangered orchid Cypripedium calceolus
    Background and Aims To counteract the ongoing worldwide biodiversity loss, conservation actions are required to re-establish populations of threatened species. Two key factors predominantly involved in finding the most suitable habitats for endangered plant species are the surrounding plant community composition and the physicochemical parameters of the soil rooting zone. However, such factors are likely to be context- and species-dependent, so it remains unclear to what extent they influence the performance of target species. Methods We studied large and small Swiss populations of the endangered orchid Cypripedium calceolus. We measured functional traits related to C. calceolus plant and population performance (clonal patch area, plant height, number, of leaf, stems, flowers and fruits), realized vegetation surveys, soil profile analyses, and tested for relationships between plant traits and the surrounding vegetation structure or soil physicochemical parameters. Results Large populations contained bigger patches with more stems and leaves, and produced more flower per individual than small populations. Neither vegetation alliances nor soil classes per se could predict C. calceolus functional traits and population size. However, functional traits explaining population performance and size were related to specific soil parameters (soil organic matter content, pH and phosphorus), in addition to a combination of presence-absence of plant indicator species, relating to ecotones between forests and clearings. Conclusion We show that even for species that can grow across a wide range of vegetation groups both indicator species and specific soil parameters can be used to assess the most favourable sites to implement (re)-introduction actions.
  • Publication
    Accès libre
    Detecting preservation and reintroduction sitesfor endangered plant species using a two-step modelingand field approach
    (2022-8-10) ;
    Broennimann, Olivier
    ;
    Storrer, Yannick
    ;
    ;
    Guisan, Antoine
    ;
    To withstand the surge of species loss worldwide, (re)introduction of endan-gered plant species has become an increasingly common technique in conser-vation biology. Successful (re)introduction plans, however, require identifyingsites that provide the optimal ecological conditions for the target species tothrive. In this study, we propose a two-step approach to identify appropriate(re)introduction sites. The first step involves modeling the niche and distribu-tion of the species with bioclimatic and topographical predictors, both at conti-nental and at national scales. The second step consists of refining thesebioclimatic predictions by analyzing stationary ecological parameters, such assoil conditions, and relating them to population-level fitness values. We dem-onstrate this methodology using Swiss populations of the lady's slipper orchid(Cypripedium calceolusL., Orchidaceae), for which conservation plans haveexisted for years but have generally been unfruitful. Our workflow identifiedsites for future (re)introductions based on the species requirements for mid-to-sunny light conditions and specific soil physico-chemical properties, such asbasic to neutral pH and low soil organic matter content. Our findings showthat by combining wide-scale bioclimatic modeling with fine scale field mea-surements it is possible to carefully identify the ecological requirements of atarget species for successful (re)introductions.