Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Deforestation effects on Amazon forest resilience
 
  • Details
Options
Vignette d'image

Deforestation effects on Amazon forest resilience

Auteur(s)
Zemp, Clara 
Institut de biologie 
C.‐F. Schleussner
H. M. J. Barbosa
A. Rammig
Date de parution
2017
In
Geophysical Research Letters
Vol.
44
No
12
De la page
6182
A la page
6190
Résumé
Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.
Identifiants
https://libra.unine.ch/handle/123456789/33031
_
10.1002/2017GL072955
Type de publication
journal article
Dossier(s) à télécharger
 main article: Geophysical Research Letters - 2017 - Zemp - Deforestation effects on Amazon forest resilience.pdf (837.51 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00