Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Vehicle Position Nowcasting with Gossip Learning
 
  • Details
Options
Vignette d'image

Vehicle Position Nowcasting with Gossip Learning

Auteur(s)
Aghaei Dinani, Mina 
Collaborateurs de la Faculté des sciences économiques 
Holzer, Adrian 
Institut du management de l'information 
Ajmone Marsan, Marco
Rizzo, Gianluca
Xuan Nguyen, Hung
Date de parution
2022-4-10
Mots-clés
  • Gossip Learning
  • Decentralized Learning
  • Edge Computing
  • Gossip Learning

  • Decentralized Learnin...

  • Edge Computing

Résumé
Nowcasting, i.e., short-term forecasting, of end user location is becoming increasingly important for anticipatory resource management in radio access networks (RAN). In this paper we look at the case of vehicles moving in dense urban environments, and we tackle the location nowcasting problem with a particular class of machine learning (ML) algorithms that go under the name Gossip Learning (GL). GL is a peer-to-peer machine learning approach based on direct, opportunistic exchange of models among nodes via wireless device-to-device (D2D) communications, and on collaborative model training. GL has recently proven to scale efficiently to large numbers of nodes, and to offer better privacy guarantees than traditional centralized learning architectures. We present new decentralized algorithms for GL, suitable for setups with dynamic nodes. In our approach, nodes improve their personalized model instance by sharing it with neighbors, and by weighting neighbors' contributions according to an estimate of their marginal utility. Our results show that the proposed GL algorithms are capable of providing accurate vehicle position predictions for time horizons of a few seconds, which are sufficient to implement effective anticipatory radio resource management.
Notes
, 2022
Nom de l'événement
IEEE WCNC
Lieu
AUSTIN, USA
Identifiants
https://libra.unine.ch/handle/123456789/29909
Type de publication
conference paper
Dossier(s) à télécharger
 main article: 2022-02-09_3982_4878.pdf (4.75 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00