Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. The simplicial generalized beta distribution. R-package and applications
 
  • Details
Options
Vignette d'image

The simplicial generalized beta distribution. R-package and applications

Auteur(s)
Graf, Monique 
Institut de statistique 
Date de parution
2019-6-8
Mots-clés
  • Dirichlet distribution
  • simplicial Generalized Beta
  • maximum likelihood estimation
  • imputation
  • R-package
  • Time Use survey.
  • Dirichlet distributio...

  • simplicial Generalize...

  • maximum likelihood es...

  • imputation

  • R-package

  • Time Use survey.

Résumé
A generalization of the Dirichlet and the scaled Dirichlet distributions is given by the simplicial generalized Beta, SGB (Graf, 2017). In the Dirichlet and the scaled Dirichlet distributions, the shape parameters are modeled with auxiliary variables (Maier, 2015, R-package DirichletReg) and Monti et al. (2011), respectively. On the other hand, in the ordinary logistic normal regression, it is the scale composition that is made dependent on auxiliary variables. The modeling of
scales seems easier to interpret than the modeling of shapes. Thus in the SGB regression:
- The scale compositions are modeled in the same way as for the logistic normal regression, i.e. each auxiliary variable generates D parameters, where D is the number of parts.
- The D Dirichlet shape parameters, one for each part in the compositions, are estimated as well.
- An additional overall shape parameter is introduced in the SGB that proves to have important properties in relation with non essential zeros.
- Use of survey weights is an option.
- Imputation of missing parts is possible.
An application to the United Kingdom Time Use Survey (Gershuny and Sullivan, 2017) shows the power of the method. The R-package SGB (Graf, 2019) makes the method accessible to users. See the package vignette for more information and examples.
Notes
, 2020
Nom de l'événement
CoDaWork 2019
Lieu
Terrassa, Espagne
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/27086
Type de publication
conference paper
Dossier(s) à télécharger
 main article: 2019-06-21_1410_4040.pdf (227.14 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00