Voici les éléments 1 - 10 sur 38
  • Publication
    Métadonnées seulement
    Estimation of poverty indicators in small areas under skewed distributions
    (2014) ;
    Marin, Juan Miguel
    ;
    Molina, Isabel
    The standard methods for poverty mapping at local level assume that incomes follow a log-normal model. However, the log-normal distribution is not always well suited for modeling the income, which often shows skewness even at the log scale. As an alternative, we propose to consider a much more flexible distribution called generalized beta distribution of the second kind (GB2). The flexibility of the GB2 distribution arises from the fact that it contains four parameters in contrast with the two parameters of the log normal. One of the parameters of the GB2 controls the shape of left tail and another controls the shape of the right tail, making it suitable to model different forms of skewness. In particular, it includes the log-normal distribution as a limiting case. In this sense, it can be seen as an extension of the log-normal model to handle more adequately potential atypical or extreme values and it has been successfully applied to model the income. We propose a small area model for the incomes based on a multivariate extension of the GB2 distribution. Under this model, we define empirical best (EB) estimators of general non-linear area parameters; in particular, poverty indicators and we describe how to obtain Monte Carlo approximations of the EB estimators. A parametric bootstrap procedure is proposed for estimation of the mean squared error.
  • Publication
    Métadonnées seulement
    Regression for Compositions based on a Generalization of the Dirichlet Distribution
    (Université de Neuchâtel Institut de statistique, 2019)
    Consider a positive random vector following a compound distribution where the compounding parameter multiplies non-random scale parameters. The associated composition is the vector divided by the sum of its components. The conditions under which the composition depends on the distribution of the compounding parameter are given. When the original vector follows a compound distribution based on independent Generalized Gamma components, the Simplicial Generalized Beta (SGB) is the most general distribution of the composition that is invariant with respect to the distribution of the compounding parameter. Some properties and moments of the SGB are derived. Conditional moments given a sub-composition give a way to impute missing parts when knowing a sub-composition only. Distributional checks are made possible through the marginal distributions of functions of the parts that should be Beta distributed. A multiple SGB regression procedure is set up and applied to data from the United Kingdom Time Use survey.
  • Publication
    Métadonnées seulement
    Use of survey weights for the analysis of compositional data
    (Oxford: Wiley, 2011) ;
    Pawlosky-Glahn, V.
    ;
    Buccianti, A.
    This chapter contains sections titled: - Introduction - Elements of Survey Design - Application to Compositional Data - Discussion - References
  • Publication
    Métadonnées seulement
    La variance sous calage: Mode d’emploi la macro SURVEYCAL
    (Neuchâtel Université de Neuchatel - Office fédéral de la statistique, 2013-10-17)
    La macro SAS SURVEYCAL, programmée par Monique Graf, est le résultat d’un mandat confié à l’Institut de statistique de l’université de Neuchâtel par la section METH de l’Office fédéral de la statistique. Il s’agit d’étendre au cas du calage sur marges les résultats fournis par la procédure SAS SURVEYMEANS. Cette procédure procure des méthodes d’estimation basée sur le plan d’échantillonnage, dans le cas d’une enquête basée sur un plan de taille fixe (stratifié en grappes). SURVEYCAL permet de traiter pratiquement tous les cas envisagés dans SURVEYMEANS. Ce document est d’abord un mode d’emploi de SURVEYCAL. S’y rajoutent des illustrations utilisant des données provenant de l’enquête SILC 2009 et quelques recommandations pour choisir la méthode de calage d’une part et le mode de calcul de la variance par linéarisation, d’autre part. On introduit une méthode originale pour le calcul des bornes de calage dans les cas linéaire tronqué et logit.
  • Publication
    Métadonnées seulement
    Echantillons à usage public des recensements suisse de la population 1970-2000
    (Neuchâtel Office fédéral de la statistique, 2005) ;
    Breitenstein, Christine
    ;
    Joye, Dominique
    ;
    Joye, Claude
    ;
    Kaufmann, Rolf
  • Publication
    Métadonnées seulement
    Enquête suisse sur la structure des salaires. Programmes R pour l'intervalle de confiance de la médiane
    (Neuchâtel Office fédéral de la statistique, 2007-5-10) ;
    Ferrez, J.
    Ce rapport comporte deux parties. La première, plus mathématique, présente les calculs effectués dans le cadre de la LSE: la méthode suivie pour le calcul de la médiane, les différentes étapes nécessaires pour établir un intervalle de confiance à 95% et trois coefficients de variation ainsi que le traitement des domaines sont décrits. La deuxième partie décrit chaque élément du programme qui a été implémenté. Puis, les fonctions du package survey ayant un rapport avec les méthodes de la LSE sont analysées. Pour terminer, une comparaison des performances du programme et du package est présentée.
  • Publication
    Métadonnées seulement
    Weighted distributions
    (Université de Neuchâtel Institut de statistique, 2018)
    In a super-population statistical model, a variable of interest, defined on a finite population of size N, is considered as a set of N independent realizations of the model. The log-likelihood at the population level is then written as a sum. If only a sample is observed, drawn according to a design with unequal inclusion probabilities, the log-pseudo-likelihood is the Horvitz-Thompson estimate of the population log-likelihood. In general, the extrapolation weights are multiplied by a normalization factor, in such a way that normalized weights sum to the sample size. In a single level design, the value of estimated model parameters are unchanged by the scaling of weights, but it is in general not the case for multi-level models. The problem of the choice of the normalization factors in cluster sampling has been largely addressed in the literature, but no clear recommendations have been issued. It is proposed here to compute the factors in such a way that the pseudo-likelihood becomes a proper likelihood. The super-population model can be written equivalently for the variable of interest or for a transformation of this variable. It is shown that the pseudo-likelihood is not invariant by transformation of the variable of interest.
  • Publication
    Métadonnées seulement
  • Publication
    Métadonnées seulement
    Discretizing a compound distribution with application to categorical modelling. Part I: Methods
    (Neuchâtel Université de Neuchâtel Institut de Statistique, 2014) ;
    Many probability distributions can be represented as compound distributions. Consider some parameter vector as random. The compound distribution is the expected distribution of the variable of interest given the random parameters. Our idea is to de_ne a partition of the domain of de_nition of the random parameters, so that we can represent the expected density of the variable of interest as a _nite mixture of conditional densities. We then model the probabilities of the conditional densities using information on population categories, thus modifying the original overall model. Our examples uses the European Union Statistics on Income and Living Conditions (EU-SILC) data. For each country, we estimate a mixture model derived from the GB2 in which the probability weights are predicted with household categories. Comparisons across countries are processed using compositional data analysis tools. Our method also o_ers an indirect estimation of inequality and poverty indices.
  • Publication
    Métadonnées seulement
    SGB R-package Simplicial Generalized Beta Regression
    (Université de Neuchâtel Institut de statistique, 2018)
    Package SGB contains a generalization of the Dirichlet distribution, called the Simplicial Generalized Beta (SGB). It is a new distribution on the simplex (i.e. on the space of compositions or positive vectors with sum of components equal to 1). The Dirichlet distribution can be constructed from a random vector of independent Gamma variables divided by their sum. The SGB follows the same construction with generalized Gamma instead of Gamma variables. The Dirichlet exponents are supplemented by an overall shape parameter and a vector of scales. The scale vector is itself a composition and can be modeled with auxiliary variables through a log-ratio transformation.