Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Regression for Compositions based on a Generalization of the Dirichlet Distribution
 
  • Details
Options
Vignette d'image

Regression for Compositions based on a Generalization of the Dirichlet Distribution

Auteur(s)
Graf, Monique 
Institut de statistique 
Maison d'édition
Université de Neuchâtel Institut de statistique
Date de parution
2019
Nombre de page
26
Mots-clés
  • Compositions
  • Simplicial Generalized Beta distribution
  • maximum likelihood estimation
  • imputation
  • multiple regression. 62E15
  • 62F10
  • Compositions

  • Simplicial Generalize...

  • maximum likelihood es...

  • imputation

  • multiple regression. ...

  • 62F10

Résumé
Consider a positive random vector following a compound distribution where the compounding parameter multiplies non-random scale parameters. The associated composition is the vector divided by the sum of its components. The conditions under which the composition depends on the distribution of the compounding parameter are given. When the original vector follows a compound distribution based on independent Generalized Gamma components, the Simplicial Generalized Beta (SGB) is the most general distribution of the composition that is invariant with respect to the distribution of the compounding parameter. Some properties and moments of the SGB are derived. Conditional moments given a sub-composition give a way to impute missing parts when knowing a sub-composition only. Distributional checks are made possible through the marginal distributions of functions of the parts that should be Beta distributed. A multiple SGB regression procedure is set up and applied to data from the United Kingdom Time Use survey.
Notes
Recherche
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/27127
Type de publication
working paper
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00