Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Biologically induced mineralization in the tree Milicia excelsa (Moraceae) : its causes and consequences to the environment
 
  • Details
Options
Vignette d'image

Biologically induced mineralization in the tree Milicia excelsa (Moraceae) : its causes and consequences to the environment

Auteur(s)
Braissant, Olivier
Cailleau, Guillaume 
Institut de biologie 
Aragno, Michel 
Institut de biologie 
Verrecchia, Eric 
Centre d'hydrogéologie et de géothermie 
Date de parution
2004
In
Geobiology
No
2
De la page
59
A la page
66
Résumé
Iroko trees (Milicia excelsa) in Ivory Coast and Cameroon are unusual because of their highly biomineralized tissues, which can virtually transform the trunk into stone. Oxalic acid (C2O4H2) and metal-oxalate play important roles in their ecosystems. In this study, the various forms of oxalate and carbonate mineralization reactions are investigated by using scanning electron microscopy and X-ray diffraction. Calcium oxalate monohydrate is associated with stem, bark and root tissues, whereas calcium oxalate dihydrate is found with wood rot fungi in soils, as well as in decaying wood. Laboratory cultures show that many soil bacteria are able to oxidize calcium oxalate rapidly, resulting in an increase in solution pH. In terms of M. excelsa, these transformations lead to the precipitation of calcium carbonate, not only within the wood tissue, but also within the litter and soil. We calculate that c. 500 kg of inorganic carbon is accumulated inside an 80-year-old tree, and c. 1000 kg is associated with its surrounding soil. Crucially, the fixation of atmospheric CO2 during tree photosynthesis, and its ultimate transformation into calcite, potentially represents a long-term carbon sink, because inorganic carbon has a longer residence time than organic carbon. Considering that calcium oxalate biosynthesis is widespread in the plant and fungal kingdoms, the biomineralization displayed by M. excelsa may be an extremely common phenomena.
Identifiants
https://libra.unine.ch/handle/123456789/19292
_
10.1111/j.1472-4677.2004.00019.x
Type de publication
journal article
Dossier(s) à télécharger
 main article: Braissant_Olivier_-_Biologically_Induced_Mineralization_20050725.pdf (538.4 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00