Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Distribution of autogenous and host-derived chemical defenses in <i>Oreina</i> leaf beetles (Coleoptera: Chrysomelidae)
 
  • Details
Options
Vignette d'image

Distribution of autogenous and host-derived chemical defenses in <i>Oreina</i> leaf beetles (Coleoptera: Chrysomelidae)

Auteur(s)
Pasteels, Jacques M.
Dobler, Susanne
Rahier, Martine 
Institut de biologie 
Ehmke, Adelheid
Hartmann, Thomas
Pasteels, Jacques M.
Dobler, Susanne
Ehmke, Adelheid
Hartmann, Thomas
Date de parution
1995
In
Journal of Chemical Ecology, Springer, 1995/21/8/1163-1179
Mots-clés
  • <i>Oreina</i> spp.
  • Coleoptera
  • Chrysomelidae
  • Asteraceae
  • Senecioneae
  • Cardueae
  • Apiaceae
  • chemical defense
  • cardenolides
  • pyrrolizidine alkaloids
  • sequestration
  • <i>Oreina</i> spp.

  • Coleoptera

  • Chrysomelidae

  • Asteraceae

  • Senecioneae

  • Cardueae

  • Apiaceae

  • chemical defense

  • cardenolides

  • pyrrolizidine alkaloi...

  • sequestration

Résumé
The pronotal and elytral defensive secretions of 10 <i>Oreina</i> species were analyzed. Species feeding on Apiaceae, i.e., <i>O. frigida</i> and <i>O. viridis</i>, or on Cardueae (Asteraceae), i.e., <i>O. bidentata</i>, <i>O. coerulea</i>, and <i>O. virgulata</i>, produce species-specific complex mixtures of autogenous cardenolides. <i>O. melanocephala</i>, which feeds on <i>Doronicum clusii</i> (Senecioneae, Asteraceae), devoid of pyrrolizidine alkaloids (PAs) in its leaves, secretes, at best, traces of cardenolides. Sequestration of host-plant PAs was observed in all the other species when feeding on Senecioneae containing these alkaloids in their leaves. <i>O. cacaliae</i> is the only species that secretes host-derived PA N-oxides and no autogenous cardenolides. Differences were observed in the secretions of specimens collected in various localities, because of local differences in the vegetation. The other species, such as <i>O. elongata</i>, <i>O. intricata</i>, and <i>O. speciosissima</i>, have a mixed defensive strategy and are able both to synthesize de novo cardenolides and to sequester plant PA N-oxides. This allows a great flexibility in defense, especially in <i>O. elongata</i> and <i>O. speciosissima</i>, which feed on both PA and non-PA plants. Populations of these species were found exclusively producing cardenolides, or exclusively sequestering PA N-oxides, or still doing both, depending on the local availability of food-plants. Differences were observed between species in their ability to sequester different plant PA N-oxides and to transform them. Therefore sympatric species demonstrate differences in the composition of their host-derived secretions, also resulting from differences in host-plant preference. Finally, within-population individual differences were observed because of local plant heterogeneity in PAs. To some extent these intrapopulation variations in chemical defense are tempered by mixing diet and by the long-term storage of PA N-oxides in the insect body that are used to refill the defensive glands.
Identifiants
https://libra.unine.ch/handle/123456789/15116
_
10.1007/BF02228318
Type de publication
journal article
Dossier(s) à télécharger
 main article: Pasteels_Jacques_M._-_Distribution_of_autogenous_and_host-derived_20090805.pdf (2.1 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00