Options
Influence of conceptual Model uncertainty on contaminant transport forecasting in braided river aquifers
Auteur(s)
Date de parution
2015-12
In
Journal of Hydrology
Vol.
1, SI
No
532
De la page
124
A la page
141
Revu par les pairs
1
Résumé
Hydrogeologist are commonly confronted to field data scarcity. An interesting way to compensate this data paucity, is to use analog data. Then the questions of prediction accuracy and uncertainty assessment when using analog data shall be raised. These questions are investigated in the current paper in the case of contaminant transport forecasting in braided river aquifers. In using analog data from the literature, multiple unconditional geological realizations are produced following different geological conceptual models (Multi-Gaussian, Object-based, Pseudo-Genetic). These petrophysical realizations are tested in a contaminant transport problem based on the MADE-II tracer experiment dataset. The simulations show that reasonable contaminant transport predictions can be achieved using analog data. The initial concentration conditions and location regarding the conductivity heterogeneity field have a stronger influence on the plume behavior than the resulting equivalent permeability. The results also underline the necessity to include a wide variety of geological conceptual models and not to restrain parameter space exploration within each concept as long as no field data allows for conceptual model or parameter value falsification.
Identifiants
Type de publication
journal article
Dossier(s) à télécharger