Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Constraining distance-based multipoint simulations to proportions and trends
 
  • Details
Options
Vignette d'image

Constraining distance-based multipoint simulations to proportions and trends

Auteur(s)
Mariethoz, Grégoire 
Centre d'hydrogéologie et de géothermie 
Straubhaar, Julien 
Centre d'hydrogéologie et de géothermie 
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Chugunova, Tatiana
Biver, Pierre
Date de parution
2015-10
In
ENVIRONMENTAL MODELLING & SOFTWARE
No
72
De la page
184
A la page
197
Revu par les pairs
1
Mots-clés
  • Training image
  • Probability
  • Non-stationarity
  • Spatial modeling
  • Geostatistics
  • Training image

  • Probability

  • Non-stationarity

  • Spatial modeling

  • Geostatistics

Résumé
In the last years, the use of training images to represent spatial variability has emerged as a viable concept. Among the possible algorithms dealing with training images, those using distances between patterns have been successful for applications to subsurface modeling and earth surface observation. However, one limitation of these algorithms is that they do not provide a precise control on the local proportion of each category in the output simulations. We present a distance perturbation strategy that addresses this issue. During the simulation, the distance to a candidate value is penalized if it does not result in proportions that tend to a target given by the user. The method is illustrated on applications to remote sensing and pore-scale modeling. These examples show that the approach offers increased user control on the simulation by allowing to easily impose trends or proportions that differ from the proportions in the training image.
Identifiants
https://libra.unine.ch/handle/123456789/18176
_
10.1016/j.envsoft.2015.07.007
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2023-01-10_110_4212.pdf (5.42 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00