Options
Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen, Borrelia afzelii
Date de parution
2016-3
In
Environmental Microbiology
Vol.
3
No
18
De la page
833
A la page
845
Mots-clés
Résumé
Vector-borne pathogens use a diversity of strategies to evade the vertebrate immune system. Co-feeding transmission is a potential immune evasion strategy because the vector-borne pathogen minimizes the time spent in the vertebrate host. We tested whether the Lyme disease pathogen, Borrelia afzelii, can use co-feeding transmission to escape the acquired immune response in the vertebrate host. We induced a strain-specific, protective antibody response by immunizing mice with one of two variants of OspC (A3 and A10), the highly variable outer surface protein C of Borrelia pathogens. Immunized mice were challenged via tick bite with B.afzelii strains A3 or A10 and infested with larval ticks at days 2 and 34 post-infection to measure co-feeding and systemic transmission respectively. Antibodies against a particular OspC variant significantly reduced co-feeding transmission of the targeted (homologous) strain but not the non-targeted (heterologous) strain. Cross-immunity between OspC antigens had no effect in co-feeding ticks but reduced the spirochaete load twofold in ticks infected via systemic transmission. In summary, OspC-specific antibodies reduced co-feeding transmission of a homologous but not a heterologous strain of B.afzelii. Co-feeding transmission allowed B.afzelii to evade the negative consequences of cross-immunity on the tick spirochaete load.
Identifiants
Type de publication
journal article