Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihoods
 
  • Details
Options
Vignette d'image

A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihoods

Auteur(s)
Ardia, David 
Institut d'analyse financière 
Basturk, Nalan
Hoogerheide, Lennart
Van Dijk, Herman
Date de parution
2012
In
Computational Statistics & Data Analysis
Vol.
11
No
56
De la page
3398
A la page
3414
Revu par les pairs
1
Mots-clés
  • Marginal likelihood

  • Bayes factor

  • Importance sampling

  • Bridge sampling

  • Adaptive mixture of S...

Résumé
Strategic choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior distributions. A comparative analysis is presented of possible advantages and limitations of different simulation techniques; of possible choices of candidate distributions and choices of target or warped target distributions; and finally of numerical standard errors. The importance of a robust and flexible estimation strategy is demonstrated where the complete posterior distribution is explored. Given an appropriately yet quickly tuned adaptive candidate, straightforward importance sampling provides a computationally efficient estimator of the marginal likelihood (and a reliable and easily computed corresponding numerical standard error) in the cases investigated, which include a non-linear regression model and a mixture GARCH model. Warping the posterior density can lead to a further gain in efficiency, but it is more important that the posterior kernel be appropriately wrapped by the candidate distribution than that it is warped.
Lié au projet
Bayesian estimation of regime-switching GARCH models 
URI
https://libra.unine.ch/handle/123456789/24506
Autre version
http://www.sciencedirect.com/science/article/pii/S0167947310003440
Type de publication
Resource Types::text::journal::journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final