Voici les éléments 1 - 7 sur 7
  • Publication
    Accès libre
    A Novel Methodology for the Stochastic Integration of Geophysical and Hydrogeological Data in Geologically Consistent Models
    AbstractTo address groundwater issues, it is often necessary to develop geological and hydrogeological models. Combining geological, geophysical and hydrogeological data available on a site to build such models is often a challenge. This paper presents a methodology to integrate such data within a geologically consistent model with robust error estimation. The methodology combines the Ensemble Smoother with Multiple Data Assimilation (ESMDA) algorithm with a hierarchical geological modeling approach (ArchPy). Geophysical and hydrogeological field data are jointly assimilated in a stochastic ESMDA framework. To speed up the inversion process, forward responses are computed in lower‐dimensional spaces relevant to each physical problem. By doing so, the final models take into account multiple data sources and regional conceptual geological knowledge. This study illustrates the applicability of this novel approach using actual data from the upper Aare Valley, Switzerland. The results of cross‐validation show that the combination of different data types, each sensitive to different spatial dimensions, enhances the quality of the model within a reasonable computing time. The proposed methodology allows the automatic generation of groundwater models with robust uncertainty estimation and could be applied to a wide variety of hydrogeological issues.
  • Publication
    Accès libre
    Probabilistic estimation of tunnel inflow from a karstic conduit network
    (2023) ; ;
    Rob de Rooij
    ;
    Marco Filipponi
    ;
    When planning infrastructures such as tunnels in karstified formations, a risk assessment of groundwater inflow must be conducted. The aim of this paper is to present a workflow for the probabilistic estimation of the water inflow from karst conduits using a Monte-Carlo approach. The procedure involves three main steps. First, realistic stochastic karstic conduit network geometries are generated based on fracture and stratigraphic information using the Stochastic Karstic Simulation approach (SKS). To represent the geological uncertainty, different scenarios are considered. Then, a discrete–continuum numerical modeling approach is employed, allowing the flow calculation to account for the exchange between the matrix and the conduits as well as the transition between turbulent and laminar flow in the conduits. Because it is not known if and where (at which depths) the tunnel may hit a karst conduit, and what will be the pressure gradient in the system, different hydrogeological scenarios are considered in the uncertainty analysis phase including a randomized location of the tunnel, a range of possible pressure gradients, and a range of possible matrix permeability values. The final step consists of the statistical analysis of the results. The proposed workflow allows estimating the range of plausible inflows and studying how the inflows are related to the network geometry properties and to the hydrodynamic parameters of the aquifer. This method is illustrated in a simple synthetic but realistic case of a rather deep and confined karstic formation. In that situation, the results show that even if the pressure difference in the system and the matrix permeability value are important factors controlling the long-term inflow, the karstic conduit network geometry and connectivity also play a critical role in the determination of the potential discharge. Overall, this study demonstrates the possibility and advantages of using stochastic analysis in the early phases of project planning to predict possible long-term water inflow in tunnel after its construction.
  • Publication
    Accès libre
    Automatic stochastic 3D clay fraction model from tTEM survey and borehole data
    (2022) ;
    Anders Vest Christiansen
    ;
    AbstractIn most urbanized and agricultural areas of central Europe, the shallow underground is constituted of Quaternary deposits which are often the most extensively used layers (water pumping, shallow geothermic, material excavation). All these deposits are often complexly intertwined, leading to high spatial variability and high complexity. Geophysical data can be a fast and reliable source of information about the underground. Still, the integration of these data can be time-consuming, it lacks realistic interpolation in a full 3D space, and the final uncertainty is often not represented. In this study, we propose a new methodology to combine boreholes and geophysical data with uncertainty in an automatic framework. A spatially varying translator function that predicts the clay fraction from resistivity is inverted using boreholes description as control points. It is combined with a 3D stochastic interpolation framework based on a Multiple Points Statistics algorithm and Gaussian Random Function. This novel workflow allows incorporating robustly the data and their uncertainty and requires less user intervention than the already existing workflows. The methodology is illustrated for ground-based towed transient electromagnetic data (tTEM) and borehole data from the upper Aare valley, Switzerland. In this location, a 3D realistic high spatial resolution model of clay fraction was obtained over the whole valley. The very dense data set allowed to demonstrate the quality of the predicted values and their corresponding uncertainties using cross-validation.
  • Publication
    Accès libre
    Stochastic multi-fidelity joint hydrogeophysical inversion of consistent geological models
    In Quaternary deposits, the characterization of subsurface heterogeneity and its associated uncertainty is critical when dealing with groundwater resource management. The combination of different data types through joint inversion has proven to be an effective way to reduce final model uncertainty. Moreover, it allows the final model to be in agreement with a wider spectrum of data available on site. However, integrating them stochastically through an inversion is very time-consuming and resource expensive, due to the important number of physical simulations needed. The use of multi-fidelity models, by combining low-fidelity inexpensive and less accurate models with high-fidelity expensive and accurate models, allows one to reduce the time needed for inversion to converge. This multiscale logic can be applied for the generation of Quaternary models. Most Quaternary sedimentological models can be considered as geological units (large scale), populated with facies (medium scale), and finally completed by physical parameters (small scale). In this paper, both approaches are combined. A simple and fast time-domain EM 1D geophysical direct problem is used to first constrain a simplified stochastic geologically consistent model, where each stratigraphic unit is considered homogeneous in terms of facies and parameters. The ensemble smoother with multiple data assimilation (ES-MDA) algorithm allows generating an ensemble of plausible subsurface realizations. Fast identification of the large-scale structures is the main point of this step. Once plausible unit models are generated, high-fidelity transient groundwater flow models are incorporated. The low-fidelity models are populated stochastically with heterogeneous facies and their associated parameter distribution. ES-MDA is also used for this task by directly inferring the property values (hydraulic conductivity and resistivity) from the generated model. To preserve consistency, geophysical and hydrogeological data are inverted jointly. This workflow ensures that the models are geologically consistent and are therefore less subject to artifacts due to localized poor-quality data. It is able to robustly estimate the associated uncertainty with the final model. Finally, due to the simplification of both the direct problem and the geology during the low-fidelity part of the inversion, it greatly reduces the time required to converge to an ensemble of complex models while preserving consistency.
  • Publication
    Accès libre
    Probabilistic prediction of karst water inflow during construction of underground structures
    AbstractVarious methods have been developed in recent decades to predict hazards associated with karst voids in underground construction. Common to all these methods is that the predicted range of water inflow is often insufficient for the purpose of implementing the planned construction works. This is usually due to an incomplete knowledge of the karst conduit system within a project area, making it difficult to predict the position and characteristics of karst voids. The method presented in this paper permits a robust prediction of karst water inflow. It is based on a combination of stochastically generated, pseudo‐genetic karst conduit systems and hydraulic modelling of the hydrogeological conditions using a Monte Carlo approach. This approach facilitates a plausible estimation of the expected range of karst‐induced water inflows and also enables the probability of encountering a karst voids. to be determined. The predictions allow for differentiated treatment of the hazards associated with karst water during the construction and operation phase of underground structures. In concrete terms, this relates to the planning and implementation of exploratory measures and ground‐improvement measures, the design of the dewatering system and its monitoring during the construction and operation phase.
  • Publication
    Accès libre
    Ice volume and basal topography estimation using geostatistical methods and GPR measurements: Application on the Tsanfleuron and Scex Rouge glacier, Swiss Alps
    Ground Penetrating Radar (GPR) is nowadays widely used for determining glacier thickness. However, this method provides thickness data only along the acquisition lines and therefore interpolation has to be made between them. Depending on the interpolation strategy, calculated ice volumes can differ and can lack an accurate error estimation. Furthermore, glacial basal topography is often characterized by complex geomorphological features, which can be hard to reproduce using classical 5 interpolation methods, especially when the conditioning data are sparse or when the morphological features are too complex. This study investigates the applicability of multiple-point statistics (MPS) simulations to interpolate glacier bedrock topography using GPR measurements. In 2018, a dense GPR data set was acquired on the Tsanfleuron Glacier (Switzerland). The results obtained with the direct sampling MPS method are compared against those obtained with kriging and sequential Gaussian simulations (SGS) on both a synthetic data set – with known reference volume and bedrock topography – and the real data 10 underlying the Tsanfleuron glacier. Using the MPS modelled bedrock, the ice volume for the Scex Rouge and Tsanfleuron Glacier is estimated to be 113.9 ± 1.6 Miom3 . The direct sampling approach, unlike the SGS and the kriging, allowed not only an accurate volume estimation but also the generation of a set of realistic bedrock simulations. The complex karstic geomorphological features are reproduced, and can be used to significantly improve for example the precision of under-glacial flow estimation.
  • Publication
    Accès libre
    tTEM20AAR: a benchmark geophysical data set for unconsolidated fluvioglacial sediments
    (2021-6) ;
    Kumar Maurya, Pradip
    ;
    Vest Christiansen, Anders
    ;
    Quaternary deposits are complex and heterogeneous. They contain some of the most abundant and extensively used aquifers. In order to improve the knowledge of the spatial heterogeneity of such deposits, we acquired a large (1500 ha) and dense (20 m spacing) time domain electromagnetic (TDEM) data set in the upper Aare Valley, Switzerland (available at https://doi.org/10.5281/zenodo.4269887; Neven et al., 2020). TDEM is a fast and reliable method to measure the magnetic field directly related to the resistivity of the underground. In this paper, we present the inverted resistivity models derived from this acquisition. The depth of investigation ranges between 40 and 120 m, with an average data residual contained in the standard deviation of the data. These data can be used for many different purposes: from sedimentological interpretation of quaternary environments in alpine environments, geological and hydrogeological modeling, to benchmarking geophysical inversion techniques.