Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Automatic stochastic 3D clay fraction model from tTEM survey and borehole data
 
  • Details
Options
Vignette d'image

Automatic stochastic 3D clay fraction model from tTEM survey and borehole data

Auteur(s)
Néven, Alexis 
Centre d'hydrogéologie et de géothermie 
Anders Vest Christiansen
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Date de parution
2022
In
Scientific Reports
Vol.
12
No
1
De la page
17112
Résumé
<jats:title>Abstract</jats:title><jats:p>In most urbanized and agricultural areas of central Europe, the shallow underground is constituted of Quaternary deposits which are often the most extensively used layers (water pumping, shallow geothermic, material excavation). All these deposits are often complexly intertwined, leading to high spatial variability and high complexity. Geophysical data can be a fast and reliable source of information about the underground. Still, the integration of these data can be time-consuming, it lacks realistic interpolation in a full 3D space, and the final uncertainty is often not represented. In this study, we propose a new methodology to combine boreholes and geophysical data with uncertainty in an automatic framework. A spatially varying translator function that predicts the clay fraction from resistivity is inverted using boreholes description as control points. It is combined with a 3D stochastic interpolation framework based on a Multiple Points Statistics algorithm and Gaussian Random Function. This novel workflow allows incorporating robustly the data and their uncertainty and requires less user intervention than the already existing workflows. The methodology is illustrated for ground-based towed transient electromagnetic data (tTEM) and borehole data from the upper Aare valley, Switzerland. In this location, a 3D realistic high spatial resolution model of clay fraction was obtained over the whole valley. The very dense data set allowed to demonstrate the quality of the predicted values and their corresponding uncertainties using cross-validation.</jats:p>
Identifiants
https://libra.unine.ch/handle/123456789/32959
_
10.1038/s41598-022-21555-z
Type de publication
journal article
Dossier(s) à télécharger
 main article: s41598-022-21555-z.pdf (2.2 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00