Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. A Novel Methodology for the Stochastic Integration of Geophysical and Hydrogeological Data in Geologically Consistent Models
 
  • Details
Options
Vignette d'image

A Novel Methodology for the Stochastic Integration of Geophysical and Hydrogeological Data in Geologically Consistent Models

Auteur(s)
Néven, Alexis 
Centre d'hydrogéologie et de géothermie 
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Date de parution
2023
In
Water Resources Research
Vol.
59
No
7
Mots-clés
  • Aare Valley
  • Switzerland
  • Data integration
  • Geology
  • Geophysics
  • Hydrology
  • Stochastic models
  • Stochastic systems
  • Data assimilation
  • integration and fusion
  • Ensemble smoother
  • Geological models
  • Ground-water hydrology
  • Hydrogeological
  • Hydrogeophysics
  • Multiple data
  • Novel methodology
  • Stochastic hydrologies
  • algorithm
  • data assimilation
  • estimation method
  • groundwater resource
  • hydrogeology
  • methodology
  • stochasticity
  • Groundwater
  • Aare Valley

  • Switzerland

  • Data integration

  • Geology

  • Geophysics

  • Hydrology

  • Stochastic models

  • Stochastic systems

  • Data assimilation

  • integration and fusio...

  • Ensemble smoother

  • Geological models

  • Ground-water hydrolog...

  • Hydrogeological

  • Hydrogeophysics

  • Multiple data

  • Novel methodology

  • Stochastic hydrologie...

  • algorithm

  • data assimilation

  • estimation method

  • groundwater resource

  • hydrogeology

  • methodology

  • stochasticity

  • Groundwater

Résumé
<jats:title>Abstract</jats:title><jats:p>To address groundwater issues, it is often necessary to develop geological and hydrogeological models. Combining geological, geophysical and hydrogeological data available on a site to build such models is often a challenge. This paper presents a methodology to integrate such data within a geologically consistent model with robust error estimation. The methodology combines the Ensemble Smoother with Multiple Data Assimilation (ESMDA) algorithm with a hierarchical geological modeling approach (ArchPy). Geophysical and hydrogeological field data are jointly assimilated in a stochastic ESMDA framework. To speed up the inversion process, forward responses are computed in lower‐dimensional spaces relevant to each physical problem. By doing so, the final models take into account multiple data sources and regional conceptual geological knowledge. This study illustrates the applicability of this novel approach using actual data from the upper Aare Valley, Switzerland. The results of cross‐validation show that the combination of different data types, each sensitive to different spatial dimensions, enhances the quality of the model within a reasonable computing time. The proposed methodology allows the automatic generation of groundwater models with robust uncertainty estimation and could be applied to a wide variety of hydrogeological issues.</jats:p>
Identifiants
https://libra.unine.ch/handle/123456789/32946
_
10.1029/2023WR034992
Type de publication
journal article
Dossier(s) à télécharger
 main article: Water Resources Research - 2023 - Neven - A Novel Methodology for the Stochastic Integration of Geophysical and.pdf (5.48 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00