Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Linewidth of a quantum cascade laser assessed from its frequency noise spectrum and impact of the current driver
    We report on the measurement of the frequency noise properties of a 4.6-μm distributed-feedback quantum-cascade laser (QCL) operating in continuous wave near room temperature using a spectroscopic set-up. The flank of the R(14) ro-vibrational absorption line of carbon monoxide at 2196.6 cm^−1 is used to convert the frequency fluctuations of the laser into intensity fluctuations that are spectrally analyzed. We evaluate the influence of the laser driver on the observed QCL frequency noise and show how only a low-noise driver with a current noise density below ≈1 nA/√Hz allows observing the frequency noise of the laser itself, without any degradation induced by the current source. We also show how the laser FWHM linewidth, extracted from the frequency noise spectrum using a simple formula, can be drastically broadened at a rate of ≈1.6 MHz/(nA/√Hz) for higher current noise densities of the driver. The current noise of commercial QCL drivers can reach several nA/√Hz , leading to a broadening of the linewidth of our QCL of up to several megahertz. To remedy this limitation, we present a low-noise QCL driver with only 350 pA/√Hz current noise, which is suitable to observe the ≈550 kHz linewidth of our QCL.
  • Publication
    Accès libre
    Frequency noise of free-running 4.6 um distributed feedback quantum cascade lasers near room temperature
    The frequency noise properties of commercial distributed feedback quantum cascade lasers emitting in the 4.6 um range and operated in cw mode near room temperature (277K) are presented. The measured frequency noise power spectral density reveals a flicker noise dropping down to the very low level of <100 Hz2/Hz at 10 MHz Fourier frequency and is globally a factor of 100 lower than data recently reported for a similar laser operated at cryogenic temperature. This makes our laser a good candidate for the realization of a mid-IR ultranarrow linewidth reference.