Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    Effects of rewarding and unrewarding experiences on the response to host-induced plant odors in the gereralist parasitoid
    (2010) ;
    Ricard, I.
    ;
    Davison, A. C.
    ;
    Associative learning is known to modify foraging behavior in numerous parasitic wasps. This is in agreement with optimal foraging theory, which predicts that the wasps will adapt their responses to specific cues in accordance with the rewards they receive while perceiving these cues. Indeed, the generalist parasitoid Cotesia marginiventris shows increased attraction to a specific plant odor after perceiving this odor during contact with hosts. This positive associative learning is common among many parasitoids, but little is known about the effects of unrewarding host searching events on the attractiveness of odors. To study this, preferences of female C. marginiventris for herbivore-induced odors of three plant species were tested in a six-arm olfactometer after the wasps perceived one of these odors either i) without contacting any caterpillars, ii) while contacting the host caterpillar Spodoptera littoralis, or iii) while contacting the non-host caterpillar Pieris rapae. The results confirm the effects of positive associative learning, but showed no changes in innate responses to the host-induced odors after "negative" experiences. Hence, a positive association is made during an encounter with hosts, but unsuccessful host-foraging experiences do not necessarily lead to avoidance learning in this generalist parasitoid.
  • Publication
    Métadonnées seulement
    The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies
    (: Academic Press Inc, 1998) ;
    Bernasconi, Marco
    ;
    Bertossa, Rinaldo
    ;
    Bigler, Franz
    ;
    Caloz, Genevieve
    ;
    Dorn, Silvia
    In order to find their prey natural enemies of herbivores often make effective use of plant volatiles that are emitted by plants on which the herbivores have been feeding. The phenomenon of herbivore-induced emissions of attractants has been well investigated for mite-plant interactions and for interactions between leaf feeding caterpillars and plants. Herbivore-induced emissions of chemical signals appear to be common in plants, but little is known about induction by herbivores that have different feeding habits. We obtained more knowledge on this by comparing the volatile emissions induced in maize plants by a folivorous caterpillar (Spodoptera littoralis), a stemborer (Ostrinia nubilalis), and an aphid (Rhopalosiphum maidis). As controls we also measured the emissions of healthy, undamaged plants and plants that were mechanically damaged and then treated with caterpillar regurgitate. Volatiles were collected twice daily for 2 h over a 3-day period after initial infestation or mechanical damage. Quantitatively, the plants infested with S. littoralis emitted by far the most. Their emissions started several hours after initial damage, lasted for the 3 days, and were the highest on the third day. The volatile profile was the same for the regurgitate-treated plants, but here the emissions dropped rapidly after the first day. The plants infested by O. nubilalis emitted the same blend of volatiles, but in much lower quantities, In addition to the known induced maize volatiles, the Ostrinia-damaged plants emitted some highly volatile, still unidentified compounds, which may be specific for the frass of this insect or emitted from the damaged plant stem. The aphids induced no measurable emissions of volatiles in the maize, even after heavy infestation. This is perhaps because several aphids, including R. maidis, barely damage the plant cells, and may not trigger a plant response. These findings suggest that induction of volatiles is the result of cell tissue damage, particularly to the leaves of the plant. This should have consequences also for the search strategies employed by the natural enemies of the respective herbivores, It can be expected that enemies of stemborers use some highly volatile compounds in addition to the known induced compounds. Natural enemies of some aphids may have to resort to other foraging cues, as the plant appears to provide them with no or very little olfactory information. (C) 1998 Academic Press.