Options
Turlings, Ted
Nom
Turlings, Ted
Affiliation principale
Fonction
Professeur.e ordinaire
Email
ted.turlings@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 2 sur 2
- PublicationMétadonnées seulementInduction of systemic acquired resistance in Zea mays also enhances the plant's attractiveness to parasitoids(2008)
;Rostas, MichaelPlants under attack by caterpillars emit volatile compounds that attract the herbivore's natural enemies. In maize, the caterpillar-induced production of volatiles involves the phytohormone jasmonic acid (JA). In contrast, pathogen attack usually up-regulates the salicylic acid (SA)-pathway and results in systemic acquired resistance (SAR) against plant diseases. Activation of the SA-pathway has often been found to repress JA-dependent direct defenses, but little is known about the effects of SAR induction on indirect defenses such as volatile emission and parasitoid attraction. We examined if induction of SAR in maize, by chemical elicitation with the SA-mimic benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), attenuates the emission of volatiles induced by Spodoptera littoralis or exogenously applied JA. In addition, we determined how these treatments affected the attractiveness of the plants to the parasitoid Microplitis rufiventris in a six-arm-olfactometer. BTH treatment alone resulted in significant systemic resistance of maize seedlings against the pathogen Setosphaeria turcica, but had no detectable effect on volatile emissions. Induction of SAR significantly reduced the emission rates of two compounds (indole and (E)-beta-caryophyllene) in JA-treated plants, whereas no such negative cross-talk was found in caterpillar-damaged plants. Surprisingly, however, BTH treatment prior to caterpillar-feeding made the plants far more attractive to the parasitoid than plants that were only damaged by the herbivore. Control experiments showed that this response was due to plant-mediated effects rather than attractiveness of BTH itself. We conclude that in the studied system, plant protection by SAR activation is compatible with and can even enhance indirect defense against herbivores. (C) 2008 Elsevier Inc. All rights reserved. - PublicationMétadonnées seulementFungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids(2006)
;Rostas, Michael ;Ton, Jurriaan; Plants attacked by insects release volatile compounds that attract the herbivores' natural enemies. This so-called indirect defense is plastic and may be affected by an array of biotic and abiotic factors. We investigated the effect of fungal infection as a biotic stress agent on the emission of herbivore-induced volatiles and the possible consequences for the attraction of two parasitoid species. Maize seedlings that were simultaneously attacked by the fungus Setosphaeria turcica and larvae of Spodoptera littoralis emitted a blend of volatiles that was qualitatively similar to the blend emitted by maize that was damaged by only the herbivore, but there was a clear quantitative difference. When simultaneously challenged by fungus and herbivore, the maize plants emitted in total 47% less of the volatiles. Emissions of green leaf volatiles were unaffected. In a six-arm olfactometer, the parasitoids Cotesia marginiventris and Microplitis rufiventris responded equally well to odors of herbivore-damaged and fungus- and herbivore-damaged maize plants. Healthy and fungus-infected plants were not attractive. An additional experiment showed that the performance of S. littoralis caterpillars was not affected by the presence of the pathogen, nor was there an effect on larvae of M. rufiventris developing inside the caterpillars. Our results confirm previous indications that naive wasps may respond primarily to the green leaf volatiles.