Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density-dependent manner
    (2012)
    Robert, Christelle Aurélie Maud
    ;
    ;
    Hibbard, Bruce Elliott
    ;
    French, B. W.
    ;
    ;
    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground plant-insect interactions, little is known about the prevalence and consequences of induced responses below-ground. 2. A recent study suggested that feeding by the specialist root herbivore Diabrotica virgifera virgifera makes maize roots more susceptible to conspecifics. To better understand this phenomenon, we conducted a series of experiments to study the behavioural responses and elucidate the underlying biochemical mechanisms. 3. We found that D. virgifera benefitted from feeding on a root system in groups of intermediate size (39 larvae/plant in the laboratory), whereas its performance was reduced in large groups (12 larvae/plant). Interestingly, the herbivore was able to select host plants with a suitable density of conspecifics by using the induced plant volatile (E)-beta-caryophyllene in a dose-dependent manner. Using a split root experiment, we show that the plant-induced susceptibility is systemic and, therefore, plant mediated. Chemical analyses on plant resource reallocation and defences upon herbivory showed that the systemic induced-susceptibility is likely to stem from a combination of (i) increased free amino acid concentrations and (ii) relaxation of defence inducibility. 4. These findings show that herbivores can use induced plant volatiles in a density-dependent manner to aggregate on a host plant and change its metabolism to their own benefit. Our study furthermore helps to explain the remarkable ecological success of D. virgifera in maize fields around the world.
  • Publication
    Métadonnées seulement
    Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm
    (2012) ;
    Hibbard, Bruce Elliott
    ;
    French, B. W.
    ;
    Aims The use of entomopathogenic nematodes in the biological control of soil insect pests is hampered by the costly and inadequate application techniques. As a possible solution we evaluated a nematode encapsulation approach that offers effective application and may possibly attract the pest by adding attractants to the capsule shell. Methods Heterorhabditis bacteriophora nematodes, which show high virulence against the maize root pest Diabrotica virgifera virgifera, were encapsulated in a polysaccharide shell derived from the algae Laminaria ssp. Shells of varying thickness and composition were evaluated. Results Nematodes readily survived the encapsulation process and were able, varying with shell thickness and temperature, to break through the shell and subsequently infect hosts. The added attractants and feeding stimulants to the shell attracted the pest larvae as much as maize roots. In field trials, encapsulated H. bacteriophora nematodes were more effective in controlling D. v. virgifera than those sprayed in water over the soil surface, but in these trials the addition of stimulants did not increase the control efficiency. Conclusions The study demonstrates that nematodes can be successfully applied in capsules in the field. Further improvements are needed to make the capsules a cost effective alternative to conventional field application of nematodes.