Options
Hakobyan, Sargis
Nom
Hakobyan, Sargis
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
Voici les éléments 1 - 9 sur 9
- PublicationAccès libreCompact ultrafast frequency combs(2018)
; Les peignes de fréquences optiques fournissent un lien direct et cohérent entre les domaines optiques (fréquence de quelques centaines de THz) et micro-ondes (fréquence dans les MHz ou GHz) du spectre électromagnétique. Ils constituent un outil unique et puissant pour de nombreuses applications telles que la spectroscopie moléculaire à haute-résolution et à large spectre, la métrologie optique, l'astrophysique, les horloges atomiques, la physique fondamentale et de nombreux autres domaines de recherche. Les peignes de fréquence avec un haut taux de répétition sont d'un intérêt particulier pour les applications pouvant bénéficier d'une puissance modale élevée et d'une faible densité de modes, qui facilite la sélection et le filtrage des modes individuels et augmente le rapport signal sur bruit dans des mesures sensibles.
Les lasers à verrouillage de mode à corps solide pompés par diode représentent une approche avantageuse pour la réalisation de peignes de fréquence de haute puissance et à taux de répétition élevé. Dans cette thèse, un peigne avec un taux de répétition de 1 GHz a été développé à partir d'un laser à verrouillage de mode émettant à une longueur d'onde de 1 μm. Le laser émet plus de 2 W de puissance moyenne dans des impulsions inférieures à 100 fs. Ce laser représente une étape importante vers la réalisation de peignes de fréquence compacts et économiquement avantageux puisqu'il est pompé par une diode laser multimode de bas coût. Le spectre du laser a été entièrement stabilisé par le verrouillage en phase simultané du taux de répétition sur une référence radiofréquence (RF) à l'aide d'un élément piézo-électrique contrôlant la longueur de la cavité, et du décalage de fréquence entre porteuse et enveloppe (carrier-envelope offset - CEO - en anglais) par la méthode traditionnelle de rétroaction sur le courant de la diode de pompe. Cela a été réalisé à l'aide d'une électronique de modulation spécifiquement développée pour atteindre une haute bande passante de modulation qui est requise pour réduire le bruit généralement élevé du battement CEO dans les lasers à haut taux de répétition. Une analyse détaillée des propriétés de bruit du peigne est présentée, qui a permis d'identifier les sources de bruit dominantes et de réduire leur impact. Ainsi, la limitation apparaissant à basses fréquences de Fourier dans le bruit de fréquence d'une raie optique, qui provient du plancher de bruit de la référence RF utilisée dans la stabilisation du taux de répétition, a été repoussée en stabilisant une raie optique du peigne sur une référence optique. La référence optique est un laser ultrastable avec une largeur de raie de quelques hertz. Ainsi, un peigne de fréquence avec un taux de répétition de 1 GHz, une puissance moyenne de 2.1 W et une largeur des raies optiques d'environ 150 kHz a été démontré. La méthode traditionnelle de stabilisation du battement CEO par rétroaction sur le courant de la diode de pompe est limitée en termes de bande passante par la dynamique de la cavité laser. Cela constitue une limitation majeure dans les peignes de fréquence à haut taux de répétition. Pour repousser cette limite, la première stabilisation du battement CEO dans un peigne de fréquence avec un taux de répétition dans la gamme du GHz par modulation opto-optique (OOM) d'un miroir saturable est présentée dans cette thèse. Avec cette méthode, la bande passante de stabilisation du laser Yb:CALGO a été augmentée d'un facteur 2 par rapport à l'approche traditionnelle utilisant une modulation du gain.
Une autre technologie attractive pour la réalisation de peignes de fréquence GHz sont les lasers à guide d'onde. Comme premier pas dans cette direction, des lasers à guide d'onde dopés à l'ytterbium ont été étudiés en régime d'émission continue et en mode déclenché (Q-switched). Les lasers à guide d'onde constituent l'une des technologies les plus prometteuses pour la réalisation de lasers impulsionnels intégrés. Un laser à guide d'onde Yb:YAG de haute efficacité est démontré dans ce travail, délivrant des impulsions en mode déclenché avec une énergie de plusieurs μJ par impulsion et une puissance moyenne de 5.6 W. Ces performances ont été rendues possibles par les récents progrès réalisés dans les techniques de gravure de guides d'onde par lasers femtosecondes développées à l'université de Hambourg et dans la croissance de miroirs saturables à semiconducteurs à l'ETH Zürich. Les lasers développés constituent une source attractive pour de nombreuses applications telles que pour des processus non-linéaires, des lidars, ou pour le micro-usinage., Optical frequency combs provide a direct and phase-coherent link between the optical spectral region of the electromagnetic spectrum (i.e., hundreds of THz frequencies) and the radio-frequency domain (MHz-GHz frequencies). As a result, they constitute a unique and powerful tool for various applications such as broadband high-resolution molecular spectroscopy, optical metrology, astrophysics, optical clocks, fundamental science and many other fields of research. Frequency combs with a high repetition rate are of particular interest for applications that can benefit from a high power per comb mode and a lower spectral density of comb modes, which makes the selection and filtering of a single optical line easier, and increases the signal-to-noise ratio in sensitive measurements.
Modelocked diode-pumped solid-state lasers (DPSSLs) are a perfect solution to generate high-power high repetition rate frequency combs. In this thesis, a 1-GHz comb based on a 1-μm DPSSL has been developed, with multiwatt output power and sub-100 fs pulse durations. This laser is an important step towards the development of compact cost-efficient frequency combs since it is pumped by a low-cost highly multimode pump laser diode. The optical spectrum of the laser has been fully stabilized by phase-locking both the repetition rate frequency to a radio-frequency (RF) reference signal by means of a piezoelectrical transducer controlling the cavity length of the laser, and the carrier envelope offset (CEO) frequency using the traditional method of feedback to the pump current. This was achieved using a home-made high-bandwidth current modulator for fast control of the pump power, as CEO stabilization is particularly challenging in high-repetition rate combs and requires a large stabilization bandwidth to compensate for the generally larger CEO frequency noise.
A detailed study of the noise properties of the comb is presented, enabling the identification of the dominant noise sources and their subsequent partial reduction. For instance, the limitation in the frequency noise of the comb lines arising at low Fourier frequencies from the noise floor of the RF reference signal used in the repetition rate stabilization was circumvented by locking a comb line to an optical reference, namely an ultra-stable Hz-level continuous-wave laser. As a result, a GHz frequency comb with ~150-kHz comb mode linewidth was obtained with 2.1 W of average output power from the oscillator. The standard CEO stabilization method by feedback to the pump power is typically limited in bandwidth by the laser cavity dynamics, becoming a significant limiting factor in high-repetition rate combs. To overcome this limitation, the first opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM) in a GHz DPSSL comb is reported in this thesis. With this SESAM-OOM, the stabilization bandwidth of the Yb:CALGO DPSSL was twice as large than the traditional gain modulation.
Another highly promising technology for GHz combs are waveguide lasers. As a first step towards such systems, Yb-doped waveguide lasers have been studied in CW and Q-switched operations. Waveguide lasers are one of the most attractive systems for fully integrated chip-based pulsed lasers. A highly-efficient Yb:YAG channel waveguide laser was demonstrated in this work, which can deliver Q-switched pulses with μJ pulse energies and an output power of up to 5.6 W. This achievement was made possible by recent progresses in fs-laser-written waveguide fabrication at Hamburg University and SESAM growth techniques at ETH Zurich with advanced structural designs. These lasers are very promising systems for various applications such as a seed source for nonlinear processes, Lidar systems, and micro-machining. - PublicationAccès libreCarrier envelope offset frequency detection and stabilization of a diode-pumped mode-locked Ti:sapphire laser
;Gürel, Kutan; ; ; We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard ƒ-to-2ƒ interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments. - PublicationAccès libreHighly efficient Q-switched Yb:YAG channel waveguide laser with 5.6 W of average output power
; ; ;Hasse, Kore ;Kränkel, Christian ;Südmeyer, Thomas. Laboratoire Temps-Fréquence, Université de Neuchâtel, SwitzerlandCalmano, ThomasIn this Letter, we present high-power continuous wave (CW) and Q-switched femtosecond laser-written Yb:YAG channel waveguide lasers. In Q-switched operation, obtained by a semiconductor saturable absorber mirror (SESAM), as well as in CW operation, the laser generates average output powers of more than 5.6 W and reaches slope efficiencies above 74%. The Q-switched laser operated at a maximum repetition rate of 5.4 MHz with a minimum pulse duration of 11 ns, and with a maximum pulse energy of 1 μJ. This laser has almost an order of magnitude higher average output power than previously reported Q-switched channel waveguide lasers. - PublicationAccès libreFull stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate
; ; ; ;Gürel, Kutan; ;Mayer, Aline S ;Keller, UrsulaWe demonstrate the first self-referenced full stabilization of a diode-pumped solid-state laser (DPSSL) frequency comb with a GHz repetition rate. The Yb:CALGO DPSSL delivers an average output power of up to 2.1 W with a typical pulse duration of 96 fs and a center wavelength of 1055 nm. A carrier-envelope offset (CEO) beat with a signal-to-noise ratio of 40 dB (in 10-kHz resolution bandwidth) is detected after supercontinuum generation and ƒ-to-2ƒ interferometry directly from the output of the oscillator, without any external amplification or pulse compression. The repetition rate is stabilized to a reference synthesizer with a residual integrated timing jitter of 249 fs [10 Hz – 1 MHz] and a relative frequency stability of 10−12/s. The CEO frequency is phase-locked to an external reference via pump current feedback using home-built modulation electronics. It achieves a loop bandwidth of ∼150 kHz, which results in a tight CEO lock with a residual integrated phase noise of 680 mrad [1 Hz – 1 MHz]. We present a detailed characterization of the GHz frequency comb that combines a noise analysis of the repetition rate ƒrep, of the CEO frequency ƒCEO, and of an optical comb line at 1030 nm obtained from a virtual beat with a narrow-linewidth laser at 1557 nm using a transfer oscillator. An optical comb linewidth of about 800 kHz is assessed at 1-s observation time, for which the dominant noise sources of ƒrep and ƒCEO are identified. - PublicationAccès libreFrequency Comb Stabilization of Ultrafast Lasers by Opto-Optical Modulation of Semiconductors
;Gürel, Kutan; ;Wittwer, Valentin Johannes; In this paper, we review the current state and discuss new developments in opto-optical modulation (OOM) of semiconductor elements for frequency comb self-referenced stabilization of ultrafast lasers. This method has been successfully used for carrier-envelope offset (CEO) frequency stabilization of diodepumped solid-state lasers operating in 1-μm and 1.5-μm regimes, providing high feedback bandwidth and resulting in low noise performance. We compare the achieved results for Er- and Yb-based laser materials and in different regimes of repetition rates up to 1 GHz. In addition, we present the first semiconductor OOM for CEO stabilization in an ultrafast fiber laser. Moreover, we discuss requirements and design guidelines for OOM chips. In most demonstrations, semiconductor saturable absorber mirrors have been used for OOM, which in parallel were also responsible for pulse formation. By separating the OOM functionality from the pulse formation, we expect that it will enable low-noise CEO stabilization in other types of ultrafast lasers, such as, for example, high-power Kerr-lens mode-locked thin disk lasers. - PublicationAccès libreCarrier-envelope offset stabilization of a GHz repetition rate femtosecond laser using opto-optical modulation of a SESAM
; ; ;Gürel, Kutan ;Mayer, Aline S; We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard ƒ-to-2ƒ method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250  kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization. - PublicationAccès libreCarrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser
; ;Gürel, Kutan; ; ; ; ;Waldburger, Dominik ;Keller, UrsulaOptical frequency combs based on ultrafast lasers have enabled numerous scientific breakthroughs. However, their use for commercial applications is limited by the complexity and cost of femtosecond laser technology. Ultrafast semiconductor lasers might change this issue as they can be mass produced in a cost-efficient way while providing large spectral coverage from a single technology. However, it has not been proven to date if ultrafast semiconductor lasers are suitable for stabilization of their carrier-envelope offset (CEO) frequency. Here we present what we believe to be the first CEO frequency stabilization of an ultrafast semiconductor disk laser (SDL). The optically pumped SDL is passively modelocked by a semiconductor saturable absorber mirror. It operates at a repetition rate of 1.8 GHz and a center wavelength of 1034 nm. The 273 fs pulses of the oscillator are amplified to an average power level of 6 W and temporally compressed down to 120 fs. A coherent octave-spanning supercontinuum spectrum is generated in a photonic crystal fiber. The CEO frequency is detected in a standard ƒ–to–2ƒ interferometer and phase locked to an external reference by feedback applied to the current of the SDL pump diode. This proof-of-principle demonstrates that ultrafast SDLs are suitable for CEO stabilization and constitutes a key step for further developments of this comb technology expected in the coming years. - PublicationAccès libreFirst investigation of the noise and modulation properties of the carrier-envelope offset in a modelocked semiconductor laser
; ; ; ; ; ;Waldburger, Dominik ;Link, Sandro M ;Alfieri, Cesare G. E ;Golling, Matthias; ;Morel, Jacques ;Keller, UrsulaSüdmeyer, Thomas. Laboratoire Temps-Fréquence, Université de Neuchâtel, SwitzerlandWe present the first characterization of the noise properties and modulation response of the carrier-envelope offset (CEO) frequency in a semiconductor modelocked laser. The CEO beat of an optically-pumped vertical external-cavity surface-emitting laser (VECSEL) at 1030 nm was characterized without standard ƒ-to-2ƒ interferometry. Instead, we used an appropriate combination of signals obtained from the modelocked oscillator and an auxiliary continuous-wave laser to extract information about the CEO signal. The estimated linewidth of the free-running CEO beat is approximately 1.5 MHz at 1-s observation time, and the feedback bandwidth to enable a tight CEO phase lock to be achieved in a future stabilization loop is in the order of 300 kHz. We also characterized the amplitude and phase of the pump current to CEO-frequency transfer function, which showed a 3-dB bandwidth of ∼300 kHz for the CEO frequency modulation. This fulfills the estimated required bandwidth and indicates that the first self-referenced phase-stabilization of a modelocked semiconductor laser should be feasible in the near future. - PublicationAccès libreGreen-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power
;Gürel, Kutan; ; ;Saraceno, Clara J; ;Resan, B ;Rohrbacher, A ;Weingarten, K; We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.