Options
Mauch-Mani, Brigitte
Nom
Mauch-Mani, Brigitte
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
9 Résultats
Voici les éléments 1 - 9 sur 9
- PublicationAccès libreThe xenobiotic β-aminobutyric acid enhances Arabidopsis thermotolerance(2007)
;Zimmerli, Laurent ;Hou, Bi-Huei ;Tsai, Chia-Hong ;Jakab, Gabor; Somerville, ShaunaThe non-protein amino acid β-aminobutyric acid (BABA) primes Arabidopsis to respond more quickly and strongly to pathogen and osmotic stress. Here, we report that BABA also significantly enhances acquired thermotolerance in Arabidopsis. This thermotolerance was dependent on heat shock protein 101, a critical component of the normal heat-shock response. BABA did not enhance basal thermotolerance under a severe heat-shock treatment. No roles for the hormones ethylene and salicylic acid in BABA-induced acquired thermotolerance were identified by mutant analysis. Using global gene expression analysis, transcript levels for several transcription factors and DNA binding proteins regulating responses to the stress hormone abscisic acid (ABA) were found to be elevated in BABA-treated plants compared with water-treated plants. The role of ABA in BABA-induced thermotolerance was complex. BABA-enhanced thermotolerance was partially compromised in the ABA-insensitive mutant, abi1-1, but was augmented in abi2-1. In an unrelated process, BABA, like ABA, inhibited root growth, and the level of inhibition was roughly additive in roots treated with both compounds. Root growth of both abi1-1 and abi2-1 was also inhibited by BABA. Unexpectedly, abi1-1 and abi2-1 root growth was inhibited more strongly by combined ABA and BABA treatments than by BABA alone. Our results, together with previously published data, suggest that BABA is a general enhancer of plant stress resistance, and that cross-talk occurs between BABA and ABA signalling cascades. Specifically, the BABA-mediated accumulation of ABA transcription factors without concomitant activation of a downstream ABA response could represent one component of the BABA-primed state in Arabidopsis. - PublicationAccès libreInterplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola(2007)
; ;Ton, Jurriaan ;van Doorn, Ronald ;Jakab, Gabor ;GarcÃa-AgustÃn, PilarWe have examined the role of the callose synthase PMR4 in basal resistance and β-aminobutyric acid-induced resistance (BABA-IR) of Arabidopsis thaliana against the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Alternaria brassicicola. Compared to wild-type plants, the pmr4-1 mutant displayed enhanced basal resistance against P. syringae, which correlated with constitutive expression of the PR-1 gene. Treating the pmr4-1 mutant with BABA boosted the already elevated levels of PR-1 gene expression, and further increased the level of resistance. Hence, BABA-IR against P. syringae does not require PMR4-derived callose. Conversely, pmr4-1 plants showed enhanced susceptibility to A. brassicicola, and failed to show BABA-IR. Wild-type plants showing BABA-IR against A. brassicicola produced increased levels of JA. The pmr4-1 mutant produced less JA upon A. brassicicola infection than the wild-type. Blocking SA accumulation in pmr4-1 restored basal resistance, but not BABA-IR against A. brassicicola. This suggests that the mutant's enhanced susceptibility to A. brassicicola is caused by SA-mediated suppression of JA, whereas the lack of BABA-IR is caused by its inability to produce callose. A. brassicicola infection suppressed ABA accumulation. Pre-treatment with BABA antagonized this ABA accumulation, and concurrently potentiated expression of the ABA-responsive ABI1 gene. Hence, BABA prevents pathogen-induced suppression of ABA accumulation, and sensitizes the tissue to ABA, causing augmented deposition of PMR4-derived callose. - PublicationAccès librePriming by airborne signals boosts direct and indirect resistance in maize(2007)
;Ton, Jurriaan ;D'Alessandro, Marco ;Jourdie, Violaine ;Jakab, Gabor ;Karlen, Danielle; ; Plants counteract attack by herbivorous insects using a variety of inducible defence mechanisms. The production of toxic proteins and metabolites that instantly affect the herbivore's development are examples of direct induced defence. In addition, plants may release mixtures of volatile organic compounds (VOCs) that indirectly protect the plant by attracting natural enemies of the herbivore. Recent studies suggest that these VOCs can also prime nearby plants for enhanced induction of defence upon future insect attack. However, evidence that this defence priming causes reduced vulnerability to insects is sparse. Here we present molecular, chemical and behavioural evidence that VOC-induced priming leads to improved direct and indirect resistance in maize. A differential hybridization screen for inducible genes upon attack by Spodoptera littoralis caterpillars identified 10 defence-related genes that are responsive to wounding, jasmonic acid (JA), or caterpillar regurgitant. Exposure to VOCs from caterpillar-infested plants did not activate these genes directly, but primed a subset of them for earlier and/or stronger induction upon subsequent defence elicitation. This priming for defence-related gene expression correlated with reduced caterpillar feeding and development. Furthermore, exposure to caterpillar-induced VOCs primed for enhanced emissions of aromatic and terpenoid compounds. At the peak of this VOC emission, primed plants were significantly more attractive to parasitic Cotesia marginiventris wasps. This study shows that VOC-induced priming targets a specific subset of JA-inducible genes, and links these responses at the molecular level to enhanced levels of direct and indirect resistance against insect attack. - PublicationAccès libreDissecting the ß-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis(2005)
;Ton, Jurriaan ;Jakab, Gabor ;Toquin, Valérie; ;Iavicoli, Annalisa ;Maeder, Muriel N. ;Métraux, Jean-PierrePlants treated with the nonprotein amino acid ß-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on the observation that high amounts of BABA induce sterility in Arabidopsis thaliana, a mutagenesis screen was performed to select mutants impaired in BABA-induced sterility (ibs). Here, we report the isolation and subsequent characterization of three T-DNA–tagged ibs mutants. Mutant ibs1 is affected in a cyclin-dependent kinase–like protein, and ibs2 is defective in AtSAC1b encoding a polyphosphoinositide phosphatase. Mutant ibs3 is affected in the regulation of the ABA1 gene encoding the abscisic acid (ABA) biosynthetic enzyme zeaxanthin epoxidase. To elucidate the function of the three IBS genes in plant resistance, the mutants were tested for BABA-IR against the bacterium Pseudomonas syringae pv tomato, the oomycete Hyaloperonospora parasitica, and BABA-induced tolerance to salt. All three ibs mutants were compromised in BABA-IR against H. parasitica, although to a different extent. Whereas ibs1 was reduced in priming for salicylate (SA)-dependent trailing necrosis, mutants ibs2 and ibs3 were affected in the priming for callose deposition. Only ibs1 failed to express BABA-IR against P. syringae, which coincided with a defect in priming for SA-inducible PR-1 gene expression. By contrast, ibs2 and ibs3 showed reduced BABA-induced tolerance to salt, which correlated with an affected priming for ABA-inducible gene expression. For all three ibs alleles, the defects in BABA-induced sterility and BABA-induced protection against P. syringae, H. parasitica, and salt could be confirmed in independent mutants. The data presented here introduce three novel regulatory genes involved in priming for different defense responses. - PublicationAccès libreEnhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Priming for Its Abscisic Acid Responses(2005)
;Jakab, Gabor ;Ton, Jurriaan; ;Zimmerli, Laurent ;Métraux, Jean-PierreDrought and salt stress tolerance of Arabidopsis (Arabidopsis thaliana) plants increased following treatment with the nonprotein amino acid -aminobutyric acid (BABA), known as an inducer of resistance against infection of plants by numerous pathogens. BABA-pretreated plants showed earlier and higher expression of the salicylic acid-dependent PR-1 and PR-5 and the abscisic acid (ABA)-dependent RAB-18 and RD-29A genes following salt and drought stress. However, non-expressor of pathogenesis-related genes 1 and constitutive expressor of pathogenesis-related genes 1 mutants as well as transgenic NahG plants, all affected in the salicylic acid signal transduction pathway, still showed increased salt and drought tolerance after BABA treatment. On the contrary, the ABA deficient 1 and ABA insensitive 4 mutants, both impaired in the ABA-signaling pathway, could not be protected by BABA application. Our data demonstrate that BABA-induced water stress tolerance is based on enhanced ABA accumulation resulting in accelerated stress gene expression and stomatal closure. Here, we show a possibility to increase plant tolerance for these abiotic stresses through effective priming of the preexisting defense pathways without resorting to genetic alterations. - PublicationAccès libreAbscisic Acid and Callose : Team Players in Defence Against Pathogens ?(2005)
;Flors, V. ;Ton, Jurriaan ;Jakab, GaborAbscisic acid (ABA) plays an important role as a plant hormone and as such is involved in many different steps of plant development. It has also been shown to modulate plant responses to abiotic stress situations and in recent years, it has become evident that it is partaking in processes of plant defence against pathogens. Although ABA's role in influencing the outcome of plant-pathogen interactions is controversial, with most research pointing into the direction of increased susceptibility, recent results have shown that ABA can also be involved in rendering plants more resistant to pathogen attack. In these cases, ABA interacts with callose deposition allowing an early and efficient build up of papillae at the sites of infection. The present review tries to shed some light on a possible interplay between ABA and callose in the protection of plants against invading pathogens. - PublicationAccès libreMolecular Characterization of a Novel Lipase-Like Pathogen-Inducible Gene Family of Arabidopsis(2003)
;Jakab, Gabor ;Manrique, Amapola ;Zimmerli, Laurent ;Métraux, Jean-PierreIn a differential screening between Arabidopsis plants pretreated with the resistance-inducer ß-aminobutyric acid and untreated control plants, we have identified a gene encoding a novel lipase-like protein, PRLIP1. The abundance of PRLIP1 mRNAs in Arabidopsis leaves was up-regulated by application of ß-aminobutyric acid, salicylic acid (SA), and ethylene as well as by various pathogens. Induction of PRLIP1 depended on a functioning SA and ethylene signal transduction pathway but was independent of jasmonate signaling. This novel pathogenesis-related (PR) gene of Arabidopsis belongs to a gene family consisting of six (PRLIP1, PRLIP2, PRLIP4, PRLIP5, PRLIP6, and PRLIP7) closely related members in tandem position on chromosome 5. Among these genes, PRLIP2 also was induced in leaves by SA and infections by pathogens but on a much lower level than PRLIP1. The PRLIP1 family showed a tissue-specific expression pattern. Both PRLIP1 and PRLIP2 were specifically expressed in leaves and siliques, PRLIP1 additionally in stems and flowers. The expression of PRLIP6 and PRLIP4 was root specific, whereas mRNA of PRLIP5 and PRLIP7 were not detected in any of these tissues. The more distantly related genes PRLIP3, PRLIP9, and PRLIP8 were found on chromosomes 2, 4, and 5, respectively. The expression level of PRLIP3 was checked and found constitutive during the different stress conditions tested. The PRLIP1 gene was overexpressed in Escherichia coli, and the resulting PRLIP1 protein showed esterase activity on p-nitrophenyl-butyrate and allowed the growth of the bacteria on lipidic substrates such as Tween20 or Tween80. - PublicationAccès libreβ-Aminobutyric Acid-induced Resistance in Plants(2001)
;Jakab, Gabor ;Cottier, Valérie ;Toquin, Valérie ;Rigoli, Ghislaine ;Zimmerli, Laurent ;Métraux, Jean-PierreThe broad sprectrum protective effect of the non-protein amino acid β-aminobutyric acid (BABA) against numerous plant diseases has been well-documented in the literature. Here, we present an overview of BABA-induced protection in various pathosystems. Contriidictory reports concerning the mechanism of action underlying this type of protection incited us to take advantage of Arabidopsis/pathogen interactions as model systems to investigate the action of BABA at the genetic and molecular level. We present evidence that the protective effect of BABA is due to a potentiation of natural defense mechanisms against biotic and abiotic stresses. In order to dissect the pathways involved in potentiation by BABA describe the use of a mutational approach based on BABA-induced female sterility in Arabidopsis. - PublicationAccès librePotentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid(2000-10-31)
;Laurent Zimmerli ;Jakab, Gabor ;Métraux, Jean-PierreThe nonprotein amino acids γ-aminobutyric acid (GABA) and β-aminobutyric acid (BABA) have known biological effects in animals and plants. Their mode of action has been the object of thorough research in animals but remains unclear in plants. Our objective was to study the mode of action of BABA in the protection of Arabidopis plants against virulent pathogens. BABA protected Arabidopsis against the oomycete pathogen Peronospora parasitica through activation of natural defense mechanisms of the plant such as callose deposition, the hypersensitive response, and the formation of trailing necroses. BABA was still fully protective against P. parasitica in transgenic plants or mutants impaired in the salicylic acid, jasmonic acid, and ethylene signaling pathways. Treatment with BABA did not induce the accumulation of mRNA of the systemic acquired resistance (SAR)-associated PR-1 and the ethylene- and jasmonic acid-dependent PDF1.2 genes. However, BABA potentiated the accumulation of PR-1 mRNA after attack by virulent pathogenic bacteria. As a result, BABA-treated Arabidopsis plants were less diseased compared with the untreated control. In the case of bacteria, BABA protected mutants insensitive to jasmonic acid and ethylene but was not active in plants impaired in the SAR transduction pathway. Thus, BABA protects Arabidopsis against different virulent pathogens by potentiating pathogen-specific plant resistance mechanisms. In addition, we provide evidence that BABA-mediated papilla formation after P. parasitica infection is independent of the SAR signaling pathway.