Options
Lara, Enrique
Résultat de la recherche
Assessing the responses of Sphagnum micro-eukaryotes to climate changes using high throughput sequencing
2020-9-18, Reczuga, Monika, Seppey, Christophe Victor William, Mulot, Matthieu, Jassey, Vincent E.J., Buttler, Alexandre, Slowinska, Sandra, Slowinski, Michal, Lara, Enrique, Lamentowicz, Mariusz, Mitchell, Edward
Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world’s soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more “terrestrial” community in response to drought, in line with observed changes in the functioning of the ecosystem.
We are ready for faunistic surveys of bdelloid rotifers through DNA barcoding: the example of Sphagnum bogs of the Swiss Jura Mountains
2019, Fontaneto, Diego, Eckert, Ester M, Anicic, Nikoleta, Lara, Enrique, Mitchell, Edward
The identification of biological diversity through DNA barcoding and metabarcoding of the organisms living in the field has the potential to revolutionise the way biological surveys and monitoring are performed. Yet, we still do not know if the current representativeness of the reference database of DNA sequence data is sufficient to allow such approaches. Here, we show that, at least for bdelloid rotifers (Metazoa; Rotifera; Bdelloidea) in Europe, current knowledge is ripe to perform such surveys. We show the results of an exercise performed on bdelloid rotifers in Sphagnum bogs of the Swiss Jura Mountain. The results of DNA-based identifications were rather consistent with the morphology-based identifications, and the few cases of mismatch could be used as a cautionary tale to avoid potential misinterpretations of results. The mismatches were due to cases of the closest match not being genetically very close, and to the occurrence of cryptic species., La identificación de la diversidad biológica a través de DNA barcoding y metabarcoding de los organismos en el medio ambiente tiene el potencial de revolucionar la forma en que se realizan los inventarios biológicos y el monitoreo. Sin embargo, todavía no se sabe si las bases de datos genéticos de referencia a disposición hoy en día son lo suficientemente representativas como para permitir tales enfoques. Aquí, mostramos que, al menos para los rotíferos bdelloideos (Metazoa; Rotifera; Bdelloidea) de Europa, el nivel de conocimiento es suficiente para realizar tales estudios. Mostramos los resultados de un ejercicio realizado sobre rotíferos bdelloideos en turberas de Sphagnum del Jura suizo. Los resultados de las identificaciones basadas en el ADN fueron bastante consistentes con las identificaciones basadas en la morfología, y los pocos casos de desajuste podrían utilizarse como una advertencia para evitar posibles interpretaciones erróneas de los resultados. Estos desajustes se debieron a que las secuencias más cercanas seguían alejadas de los organismos realmente encontrados y a la presencia de especies crípticas.
A molecular approach to microeukaryotic diversity, ecology and biogeography associated with Sphagnum mosses
2017, Singer, David,, Lara, Enrique, Mitchell, Edward
Malgré le fait que les micro-eucaryotes composent la majeure partie de la biodiversité terrestre et jouent de nombreux rôles essentiels dans le maintien des écosystèmes, la connaissance de leur diversité, de leur écologie ainsi que de leurs aires de répartition reste très lacunaire. Dans ce sens, les objectifs de cette thèse sont 1) d’accroître la connaissance de la diversité des micro-eucaryotes 2) de caractériser les préférences écologiques et de déterminer quelles sont les principales variables qui influencent la composition des communautés et enfin 3) de comprendre les règles qui dirigent les communautés à l’échelle locale et globale. Pour atteindre ces objectifs, un milieu spécifique a été sélectionné : la "sphagnosphère", celui-ci désigne l’eau interstitielle sous l’influence des mousses de sphaignes (Sphagnum). Cet environnement est un excellent modèle en biologie car il se caractérise par une faible teneur en éléments nutritifs, un faible pH, des quantités élevées d’acides organiques et une grande stabilité dans le temps.
Nous avons d’abord exploré la diversité de deux groupes de protistes vivant dans les sphaignes. Le premier groupe est le genre Nebela (Arcellinida, Hyalospheniidae), un groupe d’amibes à thèque composé d’espèces étroitement apparentées. Nous avons décrit formellement la plus abondante et l’avons nommée Nebela gimllii en raison de la taille de sa thèque. Les différents profils de communautés ont révélé que les espèces ne sont pas distribuées de manière aléatoire dans les tourbières. Au contraire, nous avons observé un fort groupement phylogénétique dans les zones oligotrophes, ce qui suggère que les teneurs faibles en azote exercent une forte pression environnementale. Nous avons également étudié la diversité moléculaire du clade d’Oomycota. Ce sont des stramenopiles qui se composent de nombreux parasites d’animaux, de champignons et de végétaux, ainsi que d’espèces saprotrophes. Nous avons révélé une grande diversité dans ce clade ce qui était inattendu pour des organismes osmotrophes vivant dans des habitats oligotrophes. De plus, la plupart des phylotypes trouvés ne sont pour le moment pas décrits morphologiquement ni génétiquement, ce qui suggère l’existence d’organismes hautement spécialisés.
Nous avons également étudié la diversité des micro-eucaryotes vivant dans des Sphaignes situées à différentes altitudes dans trois zones climatiques différentes : tempérée (Suisse-France-Italie), subtropicale (Japon) et tropicale (Costa Rica). Nos résultats suggèrent que 25% des phylotypes étaient communs dans ces trois zones. Nous avons également trouvé une corrélation significativement négative entre la quantité de phylotypes liés aux organismes mixotrophes et des températures élevées. Cela suggère que la mixotrophie est désavantageuse dans un climat chaud. Enfin, nous avons étudié la répartition spatiale d’une espèce emblématique d’amibe à thèque trouvé dans les tourbières de l’hémisphère nord: Hyalosphenia papilio. Un total de 13 lignées ont été trouvées, dont neuf présentent des distributions restreintes et quatre sont bien réparties dans tout le domaine holarctique. Nous avons montré, sur la base de reconstructions phylogénétiques et d’une reconstitution des caractères ancestraux, que l’origine de H. papilio se situe probablement sur la côte ouest de l’Amérique du Nord.
En résumé, ma thèse démontre que l’environnement « sphagnosphère » accueille une diversité élevée et unique de micro-eucaryotes. Cette diversité est influencée par des variables environnementales physicochimiques à l’échelle locale mais également par le climat et la distance géographique à l’échelle mondiale. Nous avons identifié et quantifié les principales variables abiotiques locales (à savoir la microtopographie et la teneur en azote) qui influencent fortement les communautés au sein d’une même zone climatique. Ces variables ont exercé un fort effet de filtre environnemental, qui semble être un processus fondamental dans la mise en place des communautés. De plus, à l’échelle mondiale, nous avons démontré que la température était le principal paramètre influençant la composition de la communauté, et notamment l’abondance mixotrophique. Aux deux échelles, la composition des communautés, et donc les interactions biotiques (et probablement le fonctionnement des écosystèmes), changent radicalement., Despite the fact that free-living microeukaryotes compose the major part of Earth’s biodiversity and play numerous essential roles in ecosystems, knowledge on their true diversity, ecology and their global patterns of distribution remain limited. In this sense, the objectives of this thesis are 1) to increase the knowledge on the diversity of microeukaryotes 2) characterize the ecological preferences and determine which are the main variables that influence community composition, and finally 3) to understand the rules that shape the communities at both local and global scales. To meet these objectives a specific component of the earth surface was selected: the “Sphagnosphere” i.e. the interstitial water directly influenced by Sphagnum mosses. This understudied but unique microenvironment is characterized by low nutrient contents, low pH, and high amounts of organic acids produced by the mosses. It is also very stable over time.
We first explored the diversity of two groups of protists in Sphagnum peatlands. The first group was genus Nebela (Arcellinida, Hyalospheniidae), a common testate amoeba taxon in acidic soils. We formally described the most abundant one and named it Nebela gimllii due to the small and stout shells. The different community profiles revealed that species are not randomly distributed among microhabitats in peatlands. Instead, we observed a strong phylogenetic clustering in nitrogen-poor areas suggesting that little amounts of nitrogen exerted strong environmental filtering. We also surveyed the molecular diversity of Oomycota, a clade of fungi- like stramenopiles which enclose many animal, fungi and plant parasites, as well as saprotrophic species. We revealed a high diversity, which was unexpected for osmotrophic organisms in nutrient-poor habitats unless most are parasitic. Moreover, most phylotypes found were not recorded in previous studies, which suggest the existence of highly specialized organisms.
We also surveyed the diversity of microbial eukaryotes along altitudinal gradients in three different climatic zones, temperate (western Alps), subtropical (Japan) and tropical (Costa Rica). We showed that 25 percent of phylotypes were shared in the three climatic zones. We found also a significant negative correlation between the proportion of phylotypes related to mixotrophic organisms and temperature. This, in line with other lines of evidence in the literature corroborates the idea that mixotrophy is disadvantageous under warm climates. Finally, we studied the spatial distribution of an emblematic morphospecies of testate amoeba found in the northern hemisphere peatlands: Hyalosphenia papilio. A total of 13 lineages were found, from which nine showed narrowly restricted distributions, and four were well distributed across the Holarctic realm. We showed, based on phylogenetic analyses and ancestral character reconstructions that H. papilio most probably appeared somewhere in the West Coast of North America.
In summary, my PhD revealed that the Sphagnosphere environment hosts high and unique diversity. This diversity is driven by physicochemical factors at the local scale and by climate and geographical distance at the global scale. We identified and quantified the main local abiotic variables, amongst which micro-topography and nitrogen content appeared to be the most significant in shaping micro-eukaryotic diversity within the same climate zone. These variables exerted strong environmental filtering, which appeared to be fundamental process of community assembly. On the other hand, at a global scale, we demonstrated that temperature was the factor that best explain community composition, and notably the abundance of mixotrophs (and hence a different functioning). At both scales, community composition, and therefore biotic interactions (and most probably ecosystem functioning) change drastically.
A contribution to the phylogeny of agglutinating Arcellinida (Amoebozoa) based on SSU rRNA gene sequences
2017, Gomaa, Fatma, Lahr, Daniel J. G, Todorov, Milcho, Li, Jingchun, Lara, Enrique
Arcellinid testate amoebae include a wide variety of amoeboid organisms whose test (shell) varies in shape, composition and size. A decade ago, we initiated molecular phylogenetic analyses based on SSU rRNA gene sequences and a taxonomic revision of Arcellinida. However, many lineages within Arcellinida still lack molecular data, and the phylogeny of this group is largely incomplete. In this study, we obtained SSU rRNA gene sequences from seven taxa, of which six have agglutinated shell (Difflugia oblonga, D. labiosa, D. gramen, Mediolus corona, Netzelia wailesi, and N. tuberculata), and one has an entirely proteinaceous shell (Arcella intermedia). All species but Difflugia oblonga branched within the recently erected suborder Sphaerothecina, confirming the synapomorphic value of an oviform or discoid shell. Thus, we propose that species with an oviform or discoid shell currently classified within genus Difflugia must be transferred to other genera, thus continuing the process of taxonomic revision of genus Difflugia, the largest Arcellinida genus. We therefore transferred the current and the previously sequenced oviform Difflugia spp. to Netzelia spp., based on the shared globular/oviform shell shape and their monophyly. Another species, D. labiosa, formed an independent lineage that branched as a sister clade to Arcella spp.; based on the shell morphology and their phylogenetic position, we considered D. labiosa as incertae sedis.
Exploration and characterization of "Amoebozoa" diversity and investigation of their diversity patterns at regional and global scales
2020, Blandenier, Quentin, Lara, Enrique, Mitchell, Edward
La diversité mondiale des eucaryotes est dominée par des organismes (principalement) unicellulaires appelés protistes. Parmi eux, les Amoebozoa sont l'un des groupes les plus abondants, diversifiés et caractéristiques du sol, jouant ainsi des rôles importants dans le fonctionnement des écosystèmes. Cependant, leur étude a été entravée par la difficulté de les détecter et le manque de traits morphologiques stables dans la plupart des groupes. Toutefois, certains amibozoaires comme les Hyalospheniformes (Arcellinida) produisent une thèque (c.-à-d. une coquille) caractéristique qui facilite leur identification, et sont donc considérées comme un groupe modèle approprié pour étudier les schémas de répartition de la diversité. Le développement récent du barcoding moléculaire a considérablement aidé pour l’identification taxonomique, tandis que le métabarcoding a permis de révéler la composition des communautés microbiennes sans biais d'observation et de culture. Ces méthodes se sont révélées efficaces pour plusieurs groupes microbiens, mais seulement quelques études ont été conçues pour les Amoebozoa et les protocoles disponibles sont encore assez rares. Les objectifs de ma thèse étaient alors 1) améliorer et développer des méthodes moléculaires pour étudier la diversité et l'écologie des amibozoaires, 2) estimer la diversité taxonomique et fonctionnelle présente dans le sol, 3) améliorer la taxonomie et phylogénie de cette diversité afin d'établir une base solide pour de futures recherches et 4) caractériser les facteurs écologiques susceptibles d'influencer la diversité microbienne à l'échelle locale, continentale et mondiale. Nous avons d'abord identifié un nouveau marqueur moléculaire pour étudier plusieurs groupes d’arcellinides, qui s'est révélé efficace pour discriminer des taxons proches et étudier simultanément les relations phylogénétiques profondes entre des taxons éloignés (chapitre 2). De plus, nous avons également adapté un protocole de métabarcoding pour étudier le genre Nebela avec des amorces COI spécifiques et une résolution taxonomique fine (chapitre 6). Ensuite, nous avons isolé, cultivé et décrit le premier membre d'un clade environnemental d’amibozoaires évolutivement très divergent (chapitre 3). Cette amibe, l'une des plus petites espèces d'amibes décrites, présente un cycle de vie unique avec une alternance de trophozoïtes actifs phagotrophes et de ramifications osmotrophes ressemblant aux champignons. Sa présence a été fréquemment reportée dans de nombreuses études de métabarcoding du sol, mais cet organisme n'avait jamais été caractérisé auparavant. En revanche, les Hyalospheniformes sont connus depuis les travaux d’Ehrenberg au XIXe siècle. Cependant, leur diversité au niveau de l’espèce reste mal caractérisée. Dans le chapitre 4, nous avons montré que l'espèce emblématique d’amibe à thèque, Nebela militaris, n'appartenait pas au genre Nebela, mais constituait une entité distincte dans l'arbre des Hyalospheniformes. Par conséquent, nous avons érigé le nouveau genre Alabasta pour cette espèce (chapitre 4). De plus, nous avons montré que la diversité des Hyalospheniformes avait été largement sous-estimée. En effet, nos résultats morphologiques et moléculaires ont révélé la présence de plusieurs espèces au sein des genres Apodera, Alocodera et Padaungiella. Cette nouvelle diversité a des impacts sur la biogéographie microbienne, car Apodera vas et Alocodera cockayni étaient auparavant considérées comme deux espèces non-cosmopolites avec des aires de répartition géographique très étendues et de grandes tolérances écologiques. Par conséquent, nous avons montré que la situation était beaucoup plus complexe, suggérant l'existence d'endémismes locaux étroits et de spécialistes écologiques, à l'instar des genres Hyalosphenia et Nebela (chapitre 5). Finalement, nous avons exploré la diversité du genre Nebela le long d’un gradient d’élévation (chapitre 6). Nous avons observé une diminution de l’abondance et de la diversité en haute altitude ce qui correspond à un effet typique de « milieu de domaine ». Notre étude a également révélé plusieurs phylotypes inconnus limités à de hautes altitudes qui semblent présenter une exclusion réciproque avec des taxons généralistes présents à des altitudes inférieures. En conclusion, cette thèse met en évidence que des méthodes moléculaires associées à des observations morphologiques robustes sont efficaces pour révéler et décrire la diversité des Amoebozoa. De plus, ces organismes microbiens possèdent des schémas biogéographiques et macro-écologiques similaires aux animaux, plantes et champignons, dès lors que ces groupes sont étudiés au même rang taxonomique, c'est-à-dire au niveau de l'espèce. ABSTRACT The world eukaryotic diversity is dominated by (mostly) single-celled organisms referred to as protists. Among them, the Amoebozoa are one of the most numerous, diverse and characteristic groups in soil, thus playing important roles in ecosystem functioning. However, their study has been impeded by the difficulty in detecting them and the lack of stable morphological traits in most groups. Nevertheless, some amoebozoans such as the Hyalospheniformes (Arcellinida) are characterized by a self-constructed test (i.e. shell) which facilitates their identification, and are then considered as a suitable model group for investigating diversity patterns of repartition. The recent development of DNA barcoding has helped considerably taxonomic identification, whereas metabarcoding has allowed revealing microbial community composition without observational and cultivation biases. These methods have proved efficient for several microbial groups, but only few studies have been designed for Amoebozoa and available protocols are still rather scarce. The aims of my thesis were then to 1) improve and develop molecular methods to study the amoebozoan diversity and ecology, 2) estimate their taxonomic and functional diversity in the soil, 3) improve the taxonomic and phylogenetic frame for this diversity in order to build a sound basis for further research and 4) characterize the ecological drivers which are likely to influence microbial diversity at local, continental and global scales. We first identified a new molecular marker to survey arcellinids taxa, which proved to be efficient for discriminating closely-related taxa and simultaneously investigating deep relationships among distant taxa (Chapter 2). In addition, we also adapted a metabarcoding protocol with specific COI primers to survey the diversity within the genus Nebela at a fine taxonomical resolution (Chapter 6). Then, we isolated, cultivated and described the first member of a deep-branching environmental clade of Amoebozoa (Chapter 3). This amoeba, one of the smallest amoeboid species described, presents a unique life cycle with an alternation of phagotrophic active trophozoites and osmotrophic fungi-like ramifications. Its presence has been pervasively reported in many soil metabarcoding studies, but this organism had never been characterized. By contrast, Hyalospheniformes are known since the works of Ehrenberg in the 19th century. However, their diversity at the species level remains poorly characterized. In chapter 4, we showed that the iconic testate amoeba species Nebela militaris did not belong to genus Nebela but branched as a separate entity in the Hyalospheniformes tree. Therefore, we erected the new genus Alabasta for this species (Chapter 4). In addition, we demonstrated that Hyalospheniformes diversity had been greatly underestimated. Indeed, our morphological and molecular results have revealed the presence for several species within the genera Apodera, Alocodera and Padaungiella. This new diversity has implications on microbial biogeography as Apodera vas and Alocodera cockayni were previously considered as two non-cosmopolite species with very broad geographical ranges and large ecological tolerances. Furthermore, we showed that the situation was far more complex, suggesting the existence of narrow local endemisms and ecological specialists, similarly to genera Hyalosphenia and Nebela (Chapter 5). Finally, we explored the diversity patterns of the genus Nebela along an elevation gradient (Chapter 6). We observed a decrease of abundance and diversity in high elevation corresponding to a typical mid-domain effect. Our study also revealed several unknown phylotypes restricted to the higher elevation that seemed to present competitive exclusion with the generalist taxa from lower elevation. In conclusion, this thesis highlights that molecular methods associated to robust morphological observations are efficient to reveal and describe the diversity of Amoebozoa. Furthermore, these microbial organisms display biogeographical and macroecological patterns similarly to animals, plants and fungi, when all groups are studied at the same taxonomical rank, i.e. species level.
Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists
2019, Singer, David, Mitchell, Edward, Payne, Richard J, Blandenier, Quentin, Duckert, Clément, Fernández, Leonardo D, Fournier, Bertrand, Hernández, Cristián E, Granath, Gustaf, Rydin, Håkan, Bragazza, Luca, Koronatova, Natalia G, Goia, Irina, Harris, Lorna I, Kajukało, Katarzyna, Kosakyan, Anush, Lamentowicz, Mariusz, Kosykh, Natalia P, Vellak, Kai, Lara, Enrique
Recent studies show that soil eukaryotic diversity is immense and dominated by micro‐organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro‐organisms. Major diversification events in multicellular organisms have often been attributed to long‐term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum‐dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro‐organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.
Assessing soil micro-eukaryotic diversity using high-throughput amplicons sequencing: spatial patterns from local to global scales and response to ecosystem perturbation
2017, Seppey, Christophe Victor William, Mitchell, Edward, Lara, Enrique
Les micro-eucaryotes exhibent une immense diversité qui remplit plusieurs fonctions essentielles dans les écosystèmes colonisés. Ces micro-organismes sont impliqués dans tous les niveaux trophique microbiens, interagissent entre eux ainsi qu’avec d’autre groupes d’organismes tel les procaryotes ou les macro-organismes, et influencent les cycles d’éléments comme ceux du carbone ou de l’azote. Les diversités et écologie des micro-eucaryotes sont étudiées à partir de la morphologie de ces organismes et de plus en plus avec des méthodes moléculaire devenant plus abordable que jamais. Le séquençage haut débit de fragments d’ADN donnant une information taxonomique prise directement de l’environnement est maintenant le standard pour établir les communautés microbiennes et pratiquement saturer la diversité microbienne. Cette thèse profite des avancées dans cette technique pour étudier l’écologie des microeucaryotes des sols, organismes qui représentent la base de la plupart des écosystèmes terrestre et sont impliqué dans de critique questions écologique comme les changement climatique ou l’approvisionnement alimentaire. Les cinq chapitres suivent des communautés contraintes par différent niveaux de stress ou perturbation et distribuées autant sur de petite surfaces que sur le globe. Des analyses écologique classique et innovante sont utilisées dans ce travail pour couvrir des questions à propos de bioindication, fonctions, niveaux trophique, distribution spatiale et diversité de ce groupe de micro-organismes peu connu à l’immense diversité., Micro-eukaryotes exhibit a huge diversity which fulfils many essential functions in the colonized ecosystems. These micro-organisms are involved in every level of microbial trophic networks. They interact with each other and with other biota like prokaryotes or macro-organisms, and influence element cycles like the carbon or nitrogen cycle. The diversity and ecology of micro-eukaryotes are studied based on morphological analyses and more and more with molecular methods which are increasingly affordable. High-throughput sequencing of taxonomically informative DNA fragments taken directly from the environment is now the golden standard to assess microbial communities and virtually saturate the microbial diversity. This thesis takes advantage of the advances in this technique to study the ecology of micro-eukaryotes in soils, which represent the basis of most terrestrial ecosystems and are involved in critical ecological issues like climate changes or food supply. The five chapters follow communities constrained by different levels of stress or perturbation and distributed from very limited areas to global ecosystems. Classical and innovative ecological analyses are used in this work to cover questions about the bioindication, functions, trophic networks, spacial distributions and diversity of these hyper-diverse and largely unknown micro-organisms.
High-throughput sequencing of litter and moss eDNA reveals a positive correlation between the diversity of Apicomplexa and their invertebrate hosts across alpine habitats
2020, Singer, David, Duckert, Clément, Heděnec, Petr, Lara, Enrique, Hiltbrunner, Erika, Mitchell, Edward
A high diversity of Apicomplexa was recently found in tropical soils presumably reflecting the diversity of their invertebrate hosts, but such patterns have not been explored in colder regions. We analysed the diversity of Apicomplexa and their potential metazoan hosts in litter and mosses collected in 11 different alpine habitats using an eDNA metabarcoding approach. The abundance and diversity of Apicomplexa phylotypes and of their potential invertebrate hosts were positively correlated. This confirms that eDNA metabarcoding is a useful tool to explore the unknown biodiversity of free-living eukaryotes, as well as potential host-parasite interactions. Future studies should aim at describing this diversity using a combination of morphological and molecular approaches.
En garde! Redefinition of Nebela militaris (Arcellinida, Hyalospheniidae) and erection of Alabasta gen. nov.
2018, Duckert, Clément, Blandenier, Quentin, Kupferschmid, Fanny A. L, Kosakyan, Anush, Mitchell, Edward, Lara, Enrique, Singer, David
Molecular data have considerably contributed to building the taxonomy of protists. Recently, the systematics of Hyalospheniidae (Amoebozoa; Tubulinea; Arcellinida) has been widely revised, with implications extending to ecological, biogeographical and evolutionary investigations. Certain taxa, however, still have an uncertain phylogenetic position, including the common and conspicuous species Nebela militaris. A phylogenetic reconstruction of the Hyalospheniidae using partial sequences of the mitochondrial Cytochrome Oxidase Subunit 1 (COI) gene shows that N. militaris does not belong to genus Nebela, but should be placed in its own genus. The morphological singularities (strongly curved pseudostome and a marked notch in lateral view) and phylogenetic placement of our isolates motivated the creation of a new genus: Alabasta gen. nov. Based on their morphology, we include in this genus Nebela kivuense and Nebela longicollis. We discuss the position of genus Alabasta within Hyalospheniidae, and the species that could integrate this new genus based on their morphological characteristics.
NAD9/NAD7 (mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene): A new “Holy Grail” phylogenetic and DNA-barcoding marker for Arcellinida (Amoebozoa)?
2017, Blandenier, Quentin, Lara, Enrique, Mitchell, Edward, Alcantara, Daniel M.C, Siemensma, Ferry J, Todorov, Milcho, Lahr, Daniel J.G
Molecular phylogeny is an indispensable tool for assessing evolutionary relationships among protists. The most commonly used marker is the small subunit ribosomal RNA gene, a conserved gene present in many copies in the nuclear genomes. However, this marker is not variable enough at a fine-level taxonomic scale, and intra-genomic polymorphism has already been reported. Finding a marker that could be useful at both deep and fine taxonomic resolution levels seemed like a utopic dream. We designed Amoebozoa-specific primers to amplify a region including partial sequences of two subunits of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene (NAD9/NAD7). We applied them to arcellinids belonging to distantly related genera (Arcella, Difflugia, Netzelia and Hyalosphenia) and to Arcellinid-rich environmental samples to obtain additional Amoebozoa sequences. Tree topology was congruent with previous phylogenies, all nodes being highly supported, suggesting that this marker is well-suited for deep phylogenies in Arcellinida and perhaps Amoebozoa. Furthermore, it enabled discrimination of close-related taxa. This short genetic marker (ca. 250 bp) can therefore be used at different taxonomic levels, due to a fast-varying intergenic region presenting either a small intergenic sequence or an overlap, depending on the species.