Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Odor-based real-time detection and identification of pests and diseases attacking crop plants
    (2024-07-29) ; ;
    Terunobu Akiyama
    ;
    ; ;
    Kosuke Minami
    ;
    ;
    Genki Yoshikawa
    ;
    ;
    Felipe Lopez-Hilfiker
    ;
    ;
    Luca Cappellin
    ;
    Plants respond to attacks by herbivores and pathogens by releasing specific blends of volatile compounds and the resulting odor can be specific for the attacking species. We tested if these odors can be used to monitor the presence of pests and diseases in agriculture. Two methods were used, one employing piezoresistive membrane surface stress sensors and the other proton-transfer reaction mass spectrometry. Under laboratory conditions, both techniques readily distinguished between maize plants that were either undamaged, infested by caterpillars, or infected by a fungal pathogen. Under outdoor conditions, the spectrometer could be used to recognize plants with simulated caterpillar damage with about 80% accuracy. Further finetuning of these techniques should lead to the development of odor-sensing mobile devices capable of alerting farmers to the presence and exact location of pests and diseases in their fields.
  • Publication
    Accès libre
    Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots
    (2011) ;
    Balmer, Yves
    ;
    de Lange, Elvira S.
    ;
    von Merey, Georg
    ;
    ;
    Robert, Christelle Aurélie Maud
    ;
    ;
    Sobhy, Islam
    ;
    ; ;
    Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.