Options
Gning, Ophélie
Résultat de la recherche
Sensitive and selective quantification of free and total malondialdehyde in plasma using UHPLC-HRMS
2017-7-10, Mendonça, Rute, Gning, Ophélie, Di Cesare, Claudia, Lachat, Laurence, Bennett, Nigel C, Helfenstein, Fabrice, Glauser, Gaëtan
Quantification of malondialdehyde (MDA) as a marker of lipid peroxidation is relevant for many research fields. We describe a new sensitive and selective method to measure free and total plasmatic MDA, using derivatization with 2,4-dinitrophenylhydrazine (DNPH) and ultrahigh performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Free and total MDA were extracted from minute sample amounts (10 μL) using acidic precipitation and alkaline hydrolysis followed by acidic precipitation, respectively. Derivatization was completed within 10 min at room temperature, and the excess DNPH discarded by liquid-liquid extraction. Quantification was achieved by internal standardization using dideuterated MDA as internal standard. The method lowest limit of quantification (LLOQ) was 100 nM and linearity spanned > 3 orders of magnitude. Intra- and inter-day precisions for total MDA were 2.9% and 3.0%, respectively, and those for free MDA were 12.8% and 24.9%, respectively. Accuracy was 101% and 107% at low and high concentrations, respectively. In human plasma, free MDA levels were 120 nM (SD 36.26) and total MDA levels were 6.7 μM (SD 0.46). In addition, we show the applicability of this method to measure MDA plasma levels from a variety of animal species, making it invaluable to scientists in various fields.
Antioxidant allocation modulates sperm quality across changing social environments
2017-5-4, Rojas Mora, Alfonso Luis, Gning, Ophélie, Meniri, Magali, Glauser, Gaëtan, Vallat, Armelle, Helfenstein, Fabrice
In promiscuous species, male reproductive success depends on their ability to mate with fertile females and on the fertilizing ability of their sperm. In such species, theory predicts that, owing to a trade-off between pre- and post-copulatory reproductive traits, males with lesser access to females should increase resource investment into those sperm traits that enhance fertilization success–usually referred to as ejaculate quality. This prediction has been validated in several taxa, yet studies on the physiological mechanisms modulating ejaculate quality are lacking. Sperm cells are highly vulnerable to oxidative stress, which impairs male fertility. Therefore, males that better protect their sperm from oxidative stress are expected to achieve higher ejaculate quality. Based on theoretical expectations, and since social dominance is a major determinant of mating opportunity, we predicted that subordinate males should invest more into the antioxidant protection of their sperm in order to achieve higher ejaculate quality. We maintained 60 male and 60 female wild-caught house sparrows Passer domesticus in outdoor aviaries, where we experimentally manipulated male social status to test our predictions. We measured cellular oxidative stress and enzymatic antioxidant activity in blood and sperm both before and after manipulating social ranks. Before manipulating the social status, we found that ejaculate viability correlated with oxidative stress level in sperm, with dominant males producing more oxidized and less viable ejaculates. Further, males at the lower end of the hierarchy produced ejaculates of similar quality to those of dominant males, suggesting that restricted access to resources might limit male reproductive strategies. After experimentally manipulating the social status, males matched their ejaculate quality to their new rank, while increases in antioxidant investment into ejaculates paralleled increases in ejaculate viability. Oxidative stress has been proposed as a general constraint to the evolution of life histories. Our results highlight oxidative stress and strategic antioxidant allocation as important proximate physiological mechanisms underlying male reproductive strategies.