Options
Durand, Jonas
Nom
Durand, Jonas
Affiliation principale
Identifiants
Résultat de la recherche
Voici les éléments 1 - 3 sur 3
- PublicationAccès libreEvolution of a local population of a multiple-strain pathogen in its vector(2016)
; Dans la plupart des maladies infectieuses, les infections sont causées par différentes souches de la même espèce de pathogène. Ces infections multiples ont des implications importantes pour l'écologie et l'évolution de ces agents pathogènes. La présence de plusieurs souches au même endroit peut en effet conduire à des interactions compétitives qui peuvent avoir un impact fort sur la structure de la population de pathogènes. Dans les maladies à transmission vectorielle, la plupart des recherches sur les interactions entre les souches d’un pathogène se sont concentrées sur l'hôte vertébré, et il y a un manque d'information sur ce qui se passe à l'intérieur du vecteur.
La Borréliose de Lyme est la maladie vectorielle la plus courante dans l'hémisphère nord. Les agents pathogènes sont des bactéries spirochètes qui appartiennent au groupe Borrelia burgdorferi sensu lato et sont transmis entre hôtes vertébrés par les tiques dures du genre Ixodes. En Europe, les deux espèces les plus communes sont Borrelia afzelii et Borrelia garinii, qui sont spécialisés sur différentes classes d'hôtes réservoirs: les petits mammifères et les oiseaux. Chacune de ces deux espèces de Borrelia peut être subdivisées en différentes souches génétiquement distinctes. Les infections multiples causées par plusieurs souches sont communes à la fois chez l'hôte vertébré et chez la tique vectrice. Les souches sont souvent définies en utilisant le gène hautement polymorphe ospC, qui présente un motif de variation génétique particulier. En effet, un groupe majeur d’ospC est un groupe d'allèles d’ospC qui est plus de 8% différent dans sa séquence nucléotidique des autres groupes, alors que les allèles au sein d'un groupe majeur d’ospC sont moins de 2% différentes les unes des autres. Les espèces de Borrelia qui ont été étudiés à ce jour contiennent environ 20 différents groupes majeurs d’ospC.
Dans la littérature, il existe actuellement deux explications pour le maintien du polymorphisme sur le gène ospC : la sélection fréquence-dépendante négative (SFDN) ou le polymorphisme de niches multiples (PNM). La SFDN prédit que les allèles rares ont une meilleure valeur adaptative que les plus communes et devraient donc envahir la population. La PNM prédit que les souches portant les différents groupes majeurs d’ospC sont spécialisées sur différentes espèces d'hôtes, et que c’est la richesse en espèces d’hôtes qui maintient la diversité d’ospC. Nous proposons une troisième explication qui est basée sur des modèles théoriques publiés par Gupta et ses collègues, sur la façon dont une forte immunité acquise croisée chez l'hôte vertébré peut structurer une communauté de multiples souches de pathogène. Cette théorie prédit qu’une forte sélection immunitaire contre des antigènes immuno-dominants obligera les souches pathogènes à s'organiser en un ensemble de sérotypes uniques qui minimisent l'immunité acquise croisée. Ces ensembles de souches distinctes au niveau antigénique peuvent rester stables pendant de longues périodes de temps et la fréquence de chaque souche dépend de sa valeur adaptative intrinsèque.
Dans une première expérience, nous avons utilisé le séquençage 454 afin de caractériser les communautés de souches ospC de B. afzelii et B. garinii dans une population locale de nymphes Ixodes ricinus en quête, pendant une période de 11 ans. Nous avons également utilisé des estimations de la valeur adaptative intrinsèque de six souches de B. afzelii provenant d'une étude précédente d'infection expérimentale de souris de laboratoire. Nous n’avons pas trouvé d'allèles divergents intermédiairement (entre 2 et 8%) dans la population, ce qui suggère que l'immunité acquise croisée de l'hôte vertébré empêche l'invasion de la population par des souches intermédiaires. Chez les deux espèces de Borrelia la communauté des souches était stable pendant 11 ans. Nos estimations expérimentales de la valeur adaptative expliquent 63% de la variation dans les fréquences entre les différentes souches. Nos résultats étaient cohérents avec la théorie de Gupta et ses collègues qui explique comment une forte immunité acquise croisée peut structurer une communauté de multiples souches de pathogènes, mais pas avec les théories SFDN ou PNM.
Dans la deuxième expérience, nous avons utilisé le séquençage 454 et des estimations de la charge en spirochète totale pour estimer la charge en spirochète spécifique de chaque souche ospC dans chaque tique. Nous avons analysé les nymphes en quête infectées soit par B. afzelii, soit par B. garinii, qui avaient été collectées pendant une période de 3 ans dans le même endroit que l'étude précédente.
Nous avons constaté que les tiques ont une capacité de charge fixe entraînant une forte compétition entre les souches. Chez B. afzelii, les souches à la charge en spirochètes la plus élevée dans la tique étaient les souches les plus courantes dans la population de tiques. Chez B. garinii, les souches dont la charge en spirochètes était la moins affectée par la compétition avec d'autres souches étaient les souches les plus courantes dans la population de tiques. Chez les deux espèces de Borrelia, la charge en spirochètes dans la tique est un important trait d'histoire de vie. La compétition entre les souches de Borrelia dans la tique vectrice joue un rôle essentiel dans la structuration de la communauté de ce pathogène.
Dans les deux études, nous avons constaté que les nymphes infectées par une seule espèce de Borrelia contenaient souvent des groupes majeurs d’ospC « exotiques » qui appartenaient à d'autres espèces de Borrelia. Ce résultat est surprenant et révèle l'importance de l'utilisation de méthodes de classification de novo pour analyser les données de séquençage à haut débit. Nous proposons deux explications à la présence de ces groupes majeurs d’ospC exotiques. Il peut y avoir des transferts horizontaux fréquents d’allèles d’ospC entre les différentes espèces de Borrelia, ou les co-infections avec B. afzelii et B. garinii sont d’un ordre de grandeur plus fréquent qu'on ne le pensait.
Ce travail apporte un nouvel éclairage sur l'évolution des communautés de souches multiples de Borrelia et sur l'importance des interactions compétitives entre les souches pathogènes dans l’arthropode vecteur., Mixed-strain infections are the rule rather than the exception in most infectious diseases, and have important implication for the ecology and evolution of pathogens. The presence of multiple strains results in competitive interactions that can have a strong impact on the population structure of the pathogen. In vector-borne diseases, most of the research on competition between pathogen strains has focused on the vertebrate host, and there is a lack of information about what happens inside the arthropod vector.
Lyme borreliosis is the most common vector-borne disease in the northern hemisphere. The causative agents are spirochete bacteria that belong to the group Borrelia burgdorferi sensu lato and that are transmitted among vertebrate host by hard ticks of the genus Ixodes. In Europe, the two most common species are Borrelia afzelii and Borrelia garinii, which are specialized on different classes of reservoir hosts: small mammals and birds, respectively. Each of these two Borrelia species can be further subdivided into genetically distinct strains. Mixed-strain infections are common in both the vertebrate host and the tick vector. Strains are often defined using the highly polymorphic ospC gene, which has a discrete pattern of genetic variation. A major ospC group is a cluster of ospC alleles that is more than 8% divergent in nucleotide sequence from other such clusters, whereas alleles within a major ospC group are less than 2% divergent from each other. The Borrelia species that have been studied to date contain about 20 different major ospC groups.
In the literature, there are currently two explanations for the maintenance of the ospC polymorphism: negative frequency-dependent selection (NFDS) or multiple host-as-niche polymorphism (MNP). NFDS states that rare alleles have a fitness advantage over common ones and should therefore invade the population. MNP states that the strains carrying the different major ospC groups are specialized on different host species, and that it is the host species richness that maintains the ospC diversity. We propose a third explanation that is based on published theoretical models by Gupta and colleagues on how cross-reactive acquired immunity in the vertebrate host can drive the population structure of multiple-strain pathogens. This theory states that strong immune selection against immunodominant antigens will cause the pathogen strains to organize themselves into a set of unique serotypes that minimizes cross-reactive acquired immunity. These sets of antigenically distinct strains can remain stable over long periods of time and the frequency of each strain depends on its intrinsic fitness.
In a first study, we used 454-sequencing to characterize the ospC strain structure of B. afzelii and B. garinii in a local population of questing Ixodes ricinus nymphs over a period of 11 years. We also used estimates of the intrinsic fitness of six strains of B. afzelii from a previous experimental infection study that used laboratory mice.
We did not find any intermediately divergent alleles in the population, which suggested that cross-immunity from the vertebrate host prevents invasion by intermediate strains. In both Borrelia species the community of strains was stable over 11 years. Our laboratory estimates of fitness explained 63% of the variation in the frequencies between the different strains. Our results were consistent with the theory of Gupta and colleagues that explains how strong cross-reactive acquired immunity can structure the community of a multiple strain pathogen, but not with the NFDS or MNP theories.
In the second study, we used 454 sequencing and qPCR estimates of the total spirochete load to estimate the ospC strain-specific spirochete load per tick. We analysed questing nymphs infected by either B. afzelii or B. garinii that had been captured over a period of 3 years in the same location as the previous study.
We found that ticks had a fixed carrying capacity for spirochetes resulting in strong competition between strains. In B. afzelii, strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. In B. garinii, strains whose spirochete load was least affected by competition with other strains were the most common strains in the tick population. In both Borrelia species, the spirochete load in the tick is an important life history trait. Competition between Borrelia strains in the tick vector plays a critical role in the community structure of this multiple-strain, tick-borne pathogen.
In both studies, we found that nymphs infected with a single Borrelia species often carried ‘exotic’ major ospC groups that belonged to other Borrelia species. This result was surprising and reveals the importance of using de novo clustering methods to analyze highthroughput sequencing data. We propose two explanations for the presence of these exotic major ospC groups. One explanation is frequent horizontal transfer of the ospC groups between the different Borrelia species. The other explanation is that co-infections with B. afzelii and B. garinii are an order of magnitude more common than previously suspected.
This work provides new insights on the evolution of multiple-strain Borrelia populations and on the importance of competitive interactions between pathogen strains in the arthropod vector. - PublicationMétadonnées seulementCross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii(2015-12)
; ; ; Cross-reactive acquired immunity in the vertebrate host induces indirect competition between strains of a given pathogen species and is critical for understanding the ecology of mixed infections. In vector-borne diseases, cross-reactive antibodies can reduce pathogen transmission at the vector-to-host and the host-to-vector lifecycle transition. The highly polymorphic, immunodominant, outer surface protein C (OspC) of the tick-borne spirochete bacterium Borrelia afzelii induces a strong antibody response in the vertebrate host. To test how cross-immunity in the vertebrate host influences tick-to-host and host-to-tick transmission, mice were immunized with one of two strain-specific recombinant OspC proteins (A3, A10), challenged via tick bite with one of the two B. afzelii ospC strains (A3, A10), and infested with xenodiagnostic ticks. Immunization with a given rOspC antigen protected mice against homologous strains carrying the same major ospC group allele but provided little or no cross-protection against heterologous strains carrying a different major ospC group allele. There were cross-immunity effects on the tick spirochete load but not on the probability of host-to-tick transmission. The spirochete load in ticks that had fed on mice with cross-immune experience was reduced by a factor of two compared to ticks that had fed on naive control mice. In addition, strain-specific differences in mouse spirochete load, host-to-tick transmission, tick spirochete load, and the OspC-specific IgG response revealed the mechanisms that determine variation in transmission success between strains of B. afzelii. This study shows that cross-immunity in infected vertebrate hosts can reduce pathogen load in the arthropod vector with potential consequences for vector-to-host pathogen transmission. (C) 2015 Elsevier B.V. All rights reserved. - PublicationMétadonnées seulementGenetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii(2015)
; ; ; ;Monnier, SéverineThe vector-to-host and host-to-vector transmission steps are the two critical events that define the life cycle of any vector-borne pathogen. We expect negative genetic correlations between these two transmission phenotypes, if parasite genotypes specialized at invading the vector are less effective at infecting the vertebrate host and vice versa. We used the tick-borne bacterium Borrelia afzelii, a causative agent of Lyme borreliosis in Europe, to test whether genetic trade-offs exist between tick-to-host, systemic (host-to-tick), and a third mode of co-feeding (tick-to-tick) transmission. We worked with six strains of B. afzelii that were differentiated according to their ospC gene. We compared the three components of transmission among the B. afzelii strains using laboratory rodents as the vertebrate host and a laboratory colony of Ixodes ricinus as the tick vector. We used next generation matrix models to combine these transmission components into a single estimate of the reproductive number (R0) for each B. afzelii strain. We also tested whether these strain-specific estimates of R0 were correlated with the strain-specific frequencies in the field. We found significant genetic variation in the three transmission components among the B. afzelii strains. This is the first study to document genetic variation in co-feeding transmission for any tick-borne pathogen. We found no evidence of trade-offs as the three pairwise correlations of the transmission rates were all positive. The R0 values from our laboratory study explained 45% of the variation in the frequencies of the B. afzelii ospC strains in the field. Our study suggests that laboratory estimates of pathogen fitness can predict the distribution of pathogen strains in nature.