Options
Süss-Fink, Georg
Nom
Süss-Fink, Georg
Affiliation principale
Fonction
Professeur ordinaire
Email
georg.suess-fink@unine.ch
Identifiants
Résultat de la recherche
8 Résultats
Voici les éléments 1 - 8 sur 8
- PublicationAccès libreThiolato-Bridged Arene–Ruthenium Complexes: Synthesis, Molecular Structure, Reactivity, and Anticancer Activity of the Dinuclear Complexes [(arene)2Ru2 (SR)2Cl2](2012)
;Ibao, Anne-Flore ;Gras, Michaël; ; ;Zava, OlivierDyson, Paul J.Treatment of an arene–ruthenium dichloride dimer with thiols RSH to lead to cationic trithiolato complexes of the type [(arene) 2Ru2(SR)3]+ was shown to proceed through the neutral thiolato complexes [(arene)2Ru2(SR)2Cl2], which have been isolated and characterized for arene = p-MeC6H4iPr and R = CH2Ph (1), CH2CH2Ph (2), CH2C6H4-p-tBu (3), and C6H11 (4). The single-crystal X-ray structure analysis of the p-tert-butylbenzyl derivative 3 reveals that the two ruthenium atoms are bridged by the two thiolato ligands without a metal–metal bond. The neutral dithiolato complexes[(arene)2Ru2(SR)2Cl2] (1–3) are intermediates in the formation of the cationic trithiolato complexes [(arene)2Ru2(SR)3]+ (5–7). Of the new [(arene)2Ru2(SR)2Cl2] complexes, derivative 2 is highly cytotoxic against human ovarian cancer cells, with IC50 values of 0.20 μM for the A2780 cell line and 0.31 for the cisplatin-resistant cell line A2780cisR. - PublicationAccès libreSynthesis and Anticancer Activity of Long-Chain Isonicotinic Ester Ligand-Containing Arene Ruthenium Complexes and Nanoparticles(2010)
; ;Khan, Farooq-Ahmad ;Juillerat-Jeanneret, Lucienne ;Dyson, Paul J.Renfrew, Anna K.Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR). - PublicationAccès libreThiophenolato-bridged dinuclear arene ruthenium complexes: a new family of highly cytotoxic anticancer agents(2010)
;Gras, Michaël; ; ;Zava, OlivierDyson, Paul J.New cationic diruthenium complexes of the type [(arene)2Ru2(SPh)3]+ , arene being C6H6, p-iPrC6H4Me, C6Me6, C6H5R, where R = (CH2)nOC(O)C6H4-p-O(CH2)6CH3 or (CH2)nOC(O)CH[double bond, length as m-dash]CHC6H4-p-OCH3 and n = 2 or 4, are obtained from the reaction of the corresponding precursor [(arene)RuCl2]2 and thiophenol and isolated as their chloride salts. The complexes have been fully characterised by spectroscopic methods and the solid state structure of [(C6H6)2Ru2(SPh)3]+, crystallised as the hexafluorophosphate salt, has been established by single crystal X-ray diffraction. The complexes are highly cytotoxic against human ovarian cancer cells (cell lines A2780 and A2780cisR), with the IC50 values being in the submicromolar range. In comparison the analogous trishydroxythiophenolato compounds [(arene)2Ru2(S-p-C6H4OH)3]Cl (IC50 values around 100 μM) are much less cytotoxic. Thus, it would appear that the increased antiproliferative effect of the arene ruthenium complexes is due to the presence of the phenyl or toluyl substituents at the three thiolato bridges. - PublicationAccès libreSynthesis, Molecular Structure, and Anticancer Activity of Cationic Arene Ruthenium Metallarectangles(2009)
;Mattsson, Johan ;Govindaswamy, Padavattan ;Renfrew, Anna K. ;Dyson, Paul J. ;Štěpnička, Petr; The cytotoxicities of a new series of cationic metallarectangles have been established in the A2780 ovarian cancer cell line. Interestingly, the large rectangles incorporating 1,2-bis(4-pyridyl)ethylene linkers are ca. 5 times more cytotoxic (IC50 ≤ 6 μM) than the 4,4-bipyridine analogues (IC50 ≥ 30 μM), thus suggesting a correlation between cytotoxicity and the size of the rectangle. - PublicationAccès libreArene–ruthenium complexes with ferrocene-derived ligands: Synthesis and characterization of complexes of the type [Ru(η6-arene)(NC5H4CH2NHOC-C5H4FeC5H5)Cl2] and [Ru(η6-arene)(NC3H3N(CH2)2O2C–C5H4FeC5H5)Cl2](2009)
;Auzias, Mathieu ;Gueniat, Joël; ; ;Renfrew, Anna K.Dyson, Paul J.Arene–ruthenium complexes of general formula [Ru(η6-arene)(L)Cl2] where L = NC5H4CH2NHOC-C5H4FeC5H5, arene = p-iPrC6H4Me (1) or C6Me6 (2); L = NC3H3N(CH2) 2O2C–C5H4FeC5H5, arene = p-iPrC6H4Me (3) or C6Me6 (4), and diruthenium–arene complexes of general formula [Ru(η6-arene)Cl2] 2 (L) where L = 1,1′-(NC5H4CH2NHOC)2-C5H4FeC5H4, arene = p-iPrC6H4Me (5) or C6Me6 (6); L = 1,1′-(NC3H3N(CH2)2O2C)2–C5H4FeC5H4, arene = p-iPrC6H4Me (7) or C6Me6 (8) have been synthesized and characterized. The molecular structures of 1 and 3 were confirmed by single-crystal X-ray diffraction. The in vitro anticancer activities of complexes 1–8 have been studied comparatively to the uncoordinated ligands. The complexes exhibit fairly low cytotoxicities in comparison to related ferrocene-derived arene–ruthenium complexes. - PublicationAccès libreWater-soluble arene ruthenium complexes containing pyridinethiolato ligands: Synthesis, molecular structure, redox properties and anticancer activity of the cations [(η6-arene)Ru(p-SC5H4NH)3]2+(2008)
;Gras, Michaël; ; ;Štěpnička, Petr ;Renfrew, Anna K.Dyson, Paul J.The cationic complexes [(η6-arene)Ru(SC5H4NH)3]2+, arene being C6H6 (1), MeC6H5 (2), p-iPrC6H4Me (3) or C6Me6 (4), have been synthesised from the reaction of 4-pyridinethiol with the corresponding precursor (η6-arene)2Ru2 (μ2-Cl)2Cl2 and isolated as the chloride salts. The single-crystal X-ray structure of [4](PF6)2 reveals three 4-pyridinethiol moieties coordinated to the ruthenium centre through the sulphur atom, with the hydrogen atom transferred from the sulphur to the nitrogen atom. The electrochemical study of 1–4 shows a clear correlation between the Ru(II)/Ru(III) redox potentials and the number of alkyl substituents at the arene ligand (E°′ (RuII/III): 1 > 2 > 3 > 4), whereas the cytotoxicity towards A2780 ovarian cancer cells follows the series 4 > 1 > 3 > 2, the hexamethylbenzene derivative 4 being the most cytotoxic one. The corresponding reaction of the ortho-isomer, 2-pyridinethiol, with (η6-C6Me6)2Ru2 (μ2-Cl)2Cl2 does not lead to the expected 2-pyridinethiolato analogue, but yields the neutral complex (η6-C6Me6)Ru(η2-SC5H4N)(η1-SC5H4N) (5). The analogous complex (η6-C6Me6)Ru(η2-SC9H6N)-(η1-SC9H6N) (6) is obtained from the similar reaction with 2-quinolinethiol. - PublicationAccès libreThe Complex-in-a-Complex Cations [(acac)2M⊂Ru6(p-iPrC6H4Me)6(tpt)2 (dhbq)3]6+: A Trojan Horse for Cancer Cells(2008)
; ; ;Govindaswamy, Padavattan ;Renfrew, Anna K.Dyson, Paul J. - PublicationAccès libreRemarkable Anticancer Activity of Triruthenium-Arene Clusters Compared to Tetraruthenium-Arene Clusters(2007)
; ;Ang, Wee Han ;Chérioux, Frédéric ;Vieille-Petit, Ludovic ;Juillerat-Jeanneret, Lucienne; Dyson, Paul J.The in vitro activity of a series of ruthenium clusters, [(η6-C6H6)(η6-C6Me6)2Ru3 (μ-H)3 (μ3-O)][BF4], [(η6-C6H6)(η6-1,4-iPrC6H4Me)(η6-C6Me6)Ru3 (μ-H)3 (μ3-O)][BF4], [(η6-C6H6)4Ru4 (μ-H)4][BF4]2, [(η6-C6H5Me)4Ru4 (μ-H)4][BF4]2 and [(η6-C6H6)4Ru4 (μ-H)3 (μ-OH)][Cl]2, has been evaluated against A2780 and A2780cisR ovarian carcinoma cell lines. Both triruthenium clusters are very active compared to ruthenium compounds in general, whereas the tetraruthenium clusters do not display significant cytotoxicities. Since the triruthenium clusters are known to form supramolecular interactions with arenes and other functions, it is possible that such interactions are also important with respect to their mode of biological activity. The X-ray structure analysis of [(η6-C6H5Me)4Ru4 (μ-H)4][PF6]2 is also reported.