Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    Bacterial iron reduction and biogenic mineral formation for the stabilization of corroded iron objects
    En raison de la réactivité du fer à certains composés (oxygène, eau, chlore), ce métal pourrait être facilement corrodé et endommagé. De nombreux domaines tels que l'industrie alimentaire ou l'approvisionnement en eau rencontrent de graves problèmes dus à la corrosion du fer. La corrosion du fer engendre ainsi des pertes économiques importantes. Cela concerne aussi le patrimoine culturel où les objets en fer et surtout les objets archéologiques souffrent également de la corrosion et peuvent être détruits de façon irréversible. Afin de remédier à ces problèmes de corrosion, différentes méthodes conventionnelles de conservation-restauration existent. Cependant, ces techniques présentent certains inconvénients ou ne sont pas totalement efficaces en termes d’inhibition de la corrosion ou de déchloruration des objets. De nos jours, l'utilisation de la biotechnologie représente une approche prometteuse. En effet, il y a un intérêt croissant pour la synthèse de composés inorganiques par des systèmes biologiques dans des processus qui sont respectueux de l’environnement et des personnes. L'utilisation de micro-organismes ayant la capacité de transformer des produits de corrosion réactifs en composés chimiquement stables et insolubles avec un volume molaire inférieur représente une approche alternative aux méthodes traditionnelles utilisées dans le domaine de la conservation du fer. L'objectif global de cette étude est de contribuer au développement d'une approche biotechnologique pour la conservation-restauration des éléments en fer corrodés (monuments extérieurs et objets archéologiques). Pour cela, la réduction du fer par les bactéries a été choisie comme processus métabolique sous-jacent à la transformation des produits de corrosion réactifs (principalement akaganeite et lépidocrocite présents sur les objets en fer corrodés) en minéraux de Fe(II) (tels que magnétite et sidérite). L'hypothèse testée considère qu'en utilisant des bactéries réductrices du fer, des minéraux Fe(II) biogéniques seront formés permettant la conversion des produits de corrosion présents sur les objets, et qu’ainsi les objets en fer seront stabilisés et empêchés de corrosion ultérieure. Deux principales stratégies ont été étudiées au cours de ce projet. La première approche étant l'utilisation de Shewanella loihica comme modèle de bactérie réductrice du fer, notamment car elle est également connue pour être anaérobe facultative, halophile et a été utilisée pour la production de minéraux de Fe(II) dans d'autres études. Au cours de ce projet de doctorat, des résultats additionnels intéressants ont été obtenus : la réduction du fer avec S. loihica n'était possible qu'en présence de NaCl et des phosphates de Fe(II) inattendus se sont formés. La pertinence du processus de stabilisation proposé a donc été démontrée et complétée par l'étude du rôle du sel dans la réduction du fer et de l'accumulation de polyphosphates dans cet organisme. La deuxième approche consistait à isoler à partir d'échantillons environnementaux d’autres candidats bactériens réduisant le fer. L’échantillonnage a abouti à la sélection de deux de deux souches du genre Aeromonas. Les deux souches isolées ont été alors employées dans la démonstration expérimentale du processus de réduction du fer sur des objets archéologiques une avec ces deux bactéries sélectionnées permettant la mise en place d'un prototype de traitement applicable par les conservateurs-restaurateurs. ABSTRACT Due to the reactivity of iron to some compounds (oxygen, water, chlorine), this metal could be easily corroded and thus endangered. Many fields like food industry or water supply encounter severe problems due to iron corrosion that engenders important economic losses. In cultural heritage, iron artifacts and especially archaeological iron objects suffer from corrosion and could be irreversibly damaged. In order to remediate to these issues, different conventional conservation-restoration methods exist. However, these techniques present some caveats and/or are not completely efficient in terms of chlorine removal or corrosion inhibition. Nowadays, the use of biotechnology represents a promising approach. Indeed, there is a growing interest in the synthesis of inorganic components by biological systems in processes that are respectful of the environment. The use of microorganisms with the ability to transform reactive corrosion products into chemically stable and insoluble compounds with a lower molar volume represents an alternative approach to the traditional methods employed in the field of iron conservation. The overall aim of this study is to contribute to the development of a biotechnological approach for the conservation-restoration of corroded iron items (outdoor monuments and archaeological objects). For this purpose, iron reduction by bacteria was selected as an interesting metabolic process underlying the transformation of Fe(III) corrosion products (such as akageneite and lepidocrocite present in corroded iron objects) into Fe(II) minerals (such as magnetite and siderite). The hypothesis tested considers that using iron-reducing bacteria, biologically-induced Fe(II) minerals will be formed from the corrosion products present on the objects and thus these latter will be stabilized and protected further corrosion. Two main strategies were considered during this project. The first approach was the study of a known bacterium Shewanella loihica as a model iron reducer given that it is known to be a facultative anaerobe, halophilic and was used for the production of Fe(II) minerals in other studies. During this PhD project, interesting additional results were obtained: the iron reduction with S. loihica was solely possible in presence of NaCl and unexpected Fe(II) phosphate minerals were formed. The suitability of the proposed stabilization process was hence demonstrated and complemented with the investigation of the role of salt on iron reduction and of the accumulation of polyphosphates in this micro-organism. The second approach was the isolation of iron-reducing bacterial candidates from environmental samples. The screening resulted in the selection of two strains from the genus Aeromonas. Both isolated strains were employed in the experimental testing of the iron reduction process on archaeological objects allowing the setting-up of a prototype treatment that can be applied by conservator-restorers.