Voici les éléments 1 - 10 sur 44
  • Publication
    Restriction temporaire
    The complex genetic landscape of fungicide resistance evolution in "Zymoseptoria tritici"
    (Neuchâtel : Université de Neuchâtel, 2025) ; ;
    Scalliet, Gabriel
    La résistance aux fongicides chez les agents pathogènes des cultures représente un défi important pour l'agriculture durable et la sécurité alimentaire mondiale. La pression de sélection des fongicides a été sélectionnée pour les populations fongiques résistantes menaçant l'efficacité à long terme des fongicides et nécessitant une compréhension plus approfondie des mécanismes génétiques sous-jacents à la résistance. Les mutations du site cible, telles que celles de Cyp51, sont bien établies comme principaux facteurs de résistance, et les méthodes traditionnelles de génétique directe basées sur des criblages de mutagenèse de souches de référence ont aidé à prédire la mutation de résistance. Néanmoins, les enquêtes sur le terrain ont systématiquement révélé des mécanismes alternatifs. Une limitation majeure de la recherche sur la résistance est que la variabilité naturelle au sein des populations d'agents pathogènes donne lieu à des mécanismes de résistance complexes qui ne peuvent pas toujours être reproduits in vitro. Ces mécanismes impliquent souvent des adaptations polygéniques, des variations structurelles ou des changements d'expression génétique, qui sont difficiles à capturer dans des environnements de laboratoire contrôlés mais sont essentiels pour comprendre l'évolution de la résistance dans le monde réel. Les genome wide association studies (GWAS) offrent une alternative puissante aux criblages de mutagenèse en exploitant la variabilité naturelle au sein des populations d'agents pathogènes à grande échelle. En analysant diverses souches fongiques exposées à des applications de fongicides, GWAS peut identifier les mécanismes de résistance façonnés par les pressions de sélection du monde réel, offrant une compréhension plus complète de l'évolution de la résistance aux fongicides. À cette fin, nous avons constitué un panel génomique européen de Zymoseptoria tritici, le principal pathogène du blé, couvrant 1394 souches collectées sur 15 ans dans 27 pays d'Europe, un continent où les fongicides sont utilisés depuis longtemps et de manière diversifiée. Nous nous concentrons sur la principale classe de fongicides utilisée en agriculture en Europe, les demethylation inhibitors (DMI). En intégrant deux approches de phénotypage, trois méthodes de génotypage et six DMI largement utilisés sur le terrain au cours des 20 dernières années, notre analyse GWAS a révélé 21 220 variantes génétiques et 158 gènes candidats associés à la résistance aux DMI, offrant une vue complète de l'architecture génétique sous-jacente à l'évolution de la résistance. Nos résultats ont révélé une diversification importante dans la séquence codante de Cyp51, avec des modèles géographiques distincts émergeant au fil du temps. Nous avons ensuite établi un atlas de résistance aux fongicides, révélant la base génétique de la résistance à plus de 40 fongicides. Dans ce chapitre, nous avons développé un pipeline simplifié capable d'identifier les déterminants génétiques de la résistance en deux semaines. En exploitant une approche de génotypage sans référence, CNV, TE, SNP, Indels et sans référence, nous avons identifié 2 280 gènes candidats liés à la résistance aux fongicides, soit une multiplication par dix du paysage de résistance précédemment connu. Nos efforts de cartographie ont été validés par des expériences fonctionnelles, confirmant le rôle de SdhC1, Mfs1 et β-tubulin dans la médiation de la résistance. Ces résultats soulignent la puissance de cette approche pour capturer la variabilité naturelle et révéler les réponses adaptatives à la sélection des fongicides dans les populations fongiques. L'atlas de résistance aux fongicides qui en résulte offre une perspective sans précédent à l'échelle du continent sur l'évolution de la résistance, offrant un outil essentiel pour une application de fongicides guidée avec précision et une gestion durable de la résistance. Enfin, dans cette étude, nous avons exploré la dynamique évolutive de la résistance aux fongicides en Europe. Grâce à l'analyse de la fréquence des allèles sur huit sites européens et deux périodes de temps, nous avons découvert des preuves claires d'une évolution convergente, où la résistance est apparue indépendamment dans plusieurs populations. Alors que la résistance au DMI présentait les changements adaptatifs les plus forts, la résistance à l'inhibiteur de la succinate déshydrogénase (SDHI) est restée globalement faible. Malgré l'augmentation rapide de la résistance aux fongicides depuis le début des années 2010, seule une petite fraction du génome était soumise à une sélection positive, soulignant les contraintes et la prévisibilité de l'évolution de la résistance sous une pression fongicide soutenue. En intégrant les perspectives génomiques, phénotypiques et évolutives, cette thèse établit un cadre complet pour comprendre la résistance aux fongicides dans des conditions naturelles. Les résultats fournissent des informations essentielles sur les mécanismes moléculaires et évolutifs à l'origine de la résistance et soulignent l'importance de la variabilité naturelle dans la formation de la résistance au-delà des criblages de mutagenèse. Le développement d'un atlas de résistance aux fongicides permet des mesures de contrôle plus ciblées et informe la conception de stratégies antifongiques de nouvelle génération pour atténuer la propagation de la résistance. Fungicide resistance in crop pathogens presents a significant challenge to sustainable agriculture and global food security. Fungicide application has selected for resistant fungal populations threatening the long-term efficacy of fungicides and requiring a deeper understanding of the genetic mechanisms underlying resistance. Target-site mutations, such as those in Cyp51, are well established as primary drivers of resistance, and traditional forward genetics methods based on mutagenesis screens of reference strains have helped predict resistance mutation. Nevertheless, field surveys have consistently revealed alternative mechanisms. A major limitation in resistance research is that natural variability within pathogen populations gives rise to complex resistance mechanisms that cannot always be replicated in vitro. These mechanisms often involve polygenic adaptations, structural variations, or gene expression changes, which are difficult to capture in controlled laboratory settings but are critical for understanding real-world resistance evolution. Genome-wide association studies (GWAS) provide a powerful alternative to mutagenesis screens by leveraging natural variability within large-scale pathogen populations. By analyzing diverse fungal strains exposed to fungicide applications, GWAS can identify resistance mechanisms shaped by real-world selection pressures offering a more comprehensive understanding of fungicide resistance evolution. For this purpose, we assembled a European genome panel of Zymoseptoria tritici, the major wheat pathogen, spanning 1,394 strains collected over 15 years from 27 countries in Europe, a continent with a long and diverse application of fungicides. We focus on the main fungicide class applied in agriculture in Europe, the demethylation inhibitors (DMI). By integrating two phenotyping approaches, three genotyping methods, and six DMIs widely used in the field over the past 20 years, our GWAS analysis uncovered 21,220 genetic variants and 158 candidate genes associated with DMI resistance, providing a comprehensive view of the genetic architecture underlying resistance evolution. Our findings revealed extensive diversification in the Cyp51 coding sequence, with distinct geographic patterns emerging over time. We then established a fungicide resistance atlas, uncovering the genetic basis of resistance across more than 40 fungicides. In this thesis, we developed a streamlined pipeline capable of identifying genetic determinants of resistance within two weeks. By leveraging on a CNV, TE, SNPs, Indels and reference free genotyping approach, we identified 2,280 candidate genes linked to fungicide resistance—a tenfold expansion of the previously known resistance landscape. Our mapping efforts were further validated through functional experiments, confirming the role of SdhC1, Mfs1, and β-tubulin in mediating resistance. These findings highlight the power of this approach in capturing natural variability and revealing adaptive responses to fungicide selection in fungal populations. The resulting fungicide resistance atlas provides an unprecedented, continent-wide perspective on resistance evolution, offering a vital tool for precision-guided fungicide application and sustainable resistance management. Finally, in this study we explored the evolutionary dynamics of fungicide resistance in Europe. Through allele frequency analysis across eight European sites and two timeframes, we uncovered clear evidence of convergent evolution, where resistance emerged independently in multiple populations. While DMI resistance exhibited the strongest adaptive shifts, succinate dehydrogenase inhibitor (SDHI) resistance remained weak overall. Despite the rapid rise of fungicide resistance since the early 2010s, only a small fraction of the genome was under positive selection, highlighting the constraints and predictability of resistance evolution under sustained fungicide pressure. By integrating genomic, phenotypic, and evolutionary perspectives, this thesis establishes a comprehensive framework for understanding fungicide resistance in natural conditions. The findings provide essential insights into the molecular and evolutionary mechanisms driving resistance and emphasize the importance of natural variability in shaping resistance beyond mutagenesis screens. The development of a fungicide resistance atlas enables more targeted control measures and informs the design of next-generation antifungal strategies to mitigate resistance spread.
  • Publication
    Accès libre
    Detection and characterization of exogenous DNA – from genetically modified organisms (GMOs) to naturally admixed genomes
    (Neuchâtel : Université de Neuchâtel, 2025) ;
    Cette thèse porte sur la détection de l’ADN exogène, qu’il provienne naturellement par métissage ou qu’il soit introduit par modification génétique, en développant des méthodes permettant d’identifier ces traces génétiques. Au Chapitre 1, nous avons développé un test de séquençage d’amplicons hautement multiplexé pour détecter les OGM de première génération. Nos tests utilisent une plateforme de microfluidique et le séquençage de nouvelle génération (NGS) pour amplifier en parallèle et séquencer plusieurs cibles OGM. Nous avons conçu 230 paires d’amorces pour amplifier des événements de modification génétique dans différentes cultures. Nous avons également inclus des marqueurs de codage-barres pour l’identification des espèces. Nous avons démontré que notre test peut détecter les OGM de première génération par amplification parallèle. Notre test a également révélé des événements OGM « inconnus » que les tests PCR standards pourraient ne pas détecter. Étant donné sa capacité à traiter simultanément plusieurs cibles et échantillons, notre méthode basée sur la microfluidique peut servir d’outil de dépistage initial. Elle permet une détection large qui peut ensuite être examinée à l’aide de méthodes de confirmation plus sensibles. Au Chapitre 2, nous avons présenté LOCO (algorithme de COpy à faible profondeur), un nouveau modèle computationnel permettant d’inférer l’ascendance locale à partir de données de séquençage à faible couverture, sans dépendre de panels de référence externes. LOCO s’appuie sur des modèles de type Li & Stephens, mais construit ses haplotypes de référence directement à partir des données. À travers des simulations, nous avons démontré que LOCO peut inférer correctement l’ascendance dans des génomes issus d’admixture et détecter de longues introgressions. Toutefois, nous avons observé que les segments courts d’ascendance sont souvent mal attribués, une limitation fréquente des outils d’inférence d’ascendance locale. Au Chapitre 3, nous avons appliqué cette approche d’inférence d’ascendance à la détection d’OGM de seconde génération. Nous avons simulé, dans ce cadre, une modification de type OGM de seconde génération dans des génomes de riz, en copiant artificiellement de petits segments d’un individu à un autre. En principe, LOCO devrait identifier ces segments comme des introgressions s’ils diffèrent du fond d’ascendance de l’individu. Toutefois, nous avons rencontré des difficultés à initialiser les paramètres nécessaires au bon fonctionnement de LOCO. Étant donné que l’ensemble des paramètres requis est inconnu pour cet ensemble de données, LOCO n’a pas réussi à trouver les solutions de maximum global. Il est donc nécessaire de développer une meilleure stratégie d’initialisation des paramètres pour les données réelles, car dans la pratique, la vraie valeur de ces paramètres est rarement connue. Dans l’ensemble, cette thèse démontre que nos méthodes de séquençage et nos outils computationnels peuvent considérablement améliorer la détection de l’ADN exogène. ABSTRACT This thesis focuses on detecting exogenous DNA, whether it arises naturally through admixture or is introduced through genetic modification, by advancing methods for identifying these genetic traces. In Chapter 1, we developed a highly multiplexed amplicon sequencing assay to detect first-generation GMOs. Our assays use a microfluidics platform and next-generation sequencing (NGS) to amplify in parallel and sequence multiple GMO targets. We designed 230 primer pairs to amplify GM events across different crops. We also included barcoding markers for species identification. We demonstrated that our assay can detect first-geneation GMOs in a parallel amplification. Our assay also uncovered potential “unknown” GM events that standard PCR screens might miss. Given its scalability in simultaneously processing multiple targets and samples, our microfluidics-based assay can serve as a first-pass screening tool. It enables broad detection that can be reviewed with confirmatory methods. In Chapter 2, we introduced LOCO (LOw depth COpy algorithm), a new computational model to infer local ancestry from low-coverage sequencing data without depending on external reference panels. LOCO builds upon Li & Stephens–style copy models but constructs its reference haplotypes directly from the data. By simulation tests, we demostrated that LOCO can infer the correct ancestry in admixed genomes and detect longer introgressions. However, we observed that short ancestry segments are often misassigned, a common limitation of local-ancestry tools. In Chapter 3, we applied this ancestry-inference idea to second-generation GMO detection. Here, we simulated second-generation GMO-like modification in rice genomes by artificially copying small segments from one individual into another. In principle, LOCO should flag these segments as introgression if they are different from the individual’s ancestry background. However, we encountered difficulties with initialising the parameters needed by LOCO. Given that the set of parameters used by LOCO are unknown for this data set, LOCO failed to find the global maxima solutions. We need a better strategy for initialising the parameters from real-world data bceause we rarely know the true value of the parameters. Overall, this thesis demonstrates thats our sequencing and computational methods can significantly improve the detection of exogeneus DNA.
  • Publication
    Accès libre
    Giant transposons promote strain heterogeneity in a major fungal pathogen
    (2024-10-08T00:00:00Z)
    Gluck-Thaler, Emile
    ;
    Forsythe, Adrian
    ;
    Puerner, Charles
    ;
    Stajich, Jason E
    ;
    ;
    Cramer, Robert A
    ;
    Vogan, Aaron A
    Fungal infections are difficult to prevent and treat in large part due to strain heterogeneity. However, the genetic mechanisms driving pathogen variation remain poorly understood. Here, we determined the extent to which -giant transposons capable of mobilizing numerous fungal genes-generate genetic and phenotypic variability in the human pathogen . We analyzed 519 diverse strains, including 12 newly sequenced with long-read technology, to reveal 20 distinct that are generating genomic heterogeneity over timescales potentially relevant for experimental reproducibility. -mobilized genes encode diverse functions, including biofilm-related virulence factors and biosynthetic gene clusters, and many are differentially expressed during infection and antifungal exposure in a strain-specific manner. These findings support a new model of fungal evolution wherein help generate variation in gene content and expression among fungal strains. Together, our results demonstrate that are a previously hidden mechanism generating genotypic and, in turn, phenotypic heterogeneity in a major human fungal pathogen.
  • Publication
    Accès libre
    Genomic Signatures of Domestication in a Fungus Obligately Farmed by Leafcutter Ants
    (2024-10-04T00:00:00Z)
    Leal-Dutra, Caio A
    ;
    Vizueta, Joel
    ;
    Baril, Tobias
    ;
    Kooij, Pepijn W
    ;
    Rødsgaard-Jørgensen, Asta
    ;
    Conlon, Benjamin H
    ;
    ;
    Shik, Jonathan Z
    The naturally selected fungal crop (Leucoagaricus gongylophorus) farmed by leafcutter ants shows striking parallels with artificially selected plant crops domesticated by humans (e.g. polyploidy, engorged nutritional rewards, and dependence on cultivation). To date, poorly resolved L. gongylophorus genome assemblies based on short-read sequencing have constrained hypotheses about how millions of years under cultivation by ants shaped the fungal crop genome and potentially drove domestication. We use PacBio HiFi sequencing of L. gongylophorus from the leafcutter ant Atta colombica to identify 18 putatively novel biosynthetic gene clusters that likely cemented life as a cultivar (e.g. plant fragment degradation, ant-farmer communication, and antimicrobial defense). Comparative analyses with cultivated and free-living fungi showed genomic signatures of stepwise domestication transitions: (i) free-living to ant-cultivated: loss of genes conferring stress response and detoxification; (ii) hyphal food to engorged nutritional rewards: expansions of genes governing cellular homeostasis, carbohydrate metabolism, and siderophore biosynthesis; and (iii) detrital provisioning to freshly cut plant fragments: gene expansions promoting cell wall biosynthesis, fatty acid metabolism, and DNA repair. Comparisons across L. gongylophorus fungi farmed by 3 leafcutter ant species highlight genomic signatures of exclusively vertical clonal propagation and widespread transposable element activity. These results show how natural selection can shape domesticated cultivar genomes toward long-term ecological resilience of farming systems that have thrived across millennia.
  • Publication
    Accès libre
    Copy number variation introduced by a massive mobile element facilitates global thermal adaptation in a fungal wheat pathogen
    (2024-07-08T00:00:00Z)
    Tralamazza, Sabina Moser
    ;
    Gluck-Thaler, Emile
    ;
    Feurtey, Alice
    ;
    Copy number variation (CNV) can drive rapid evolution in changing environments. In microbial pathogens, such adaptation is a key factor underpinning epidemics and colonization of new niches. However, the genomic determinants of such adaptation remain poorly understood. Here, we systematically investigate CNVs in a large genome sequencing dataset spanning a worldwide collection of 1104 genomes from the major wheat pathogen Zymoseptoria tritici. We found overall strong purifying selection acting on most CNVs. Genomic defense mechanisms likely accelerated gene loss over episodes of continental colonization. Local adaptation along climatic gradients was likely facilitated by CNVs affecting secondary metabolite production and gene loss in general. One of the strongest loci for climatic adaptation is a highly conserved gene of the NAD-dependent Sirtuin family. The Sirtuin CNV locus localizes to an ~68-kb Starship mobile element unique to the species carrying genes highly expressed during plant infection. The element has likely lost the ability to transpose, demonstrating how the ongoing domestication of cargo-carrying selfish elements can contribute to selectable variation within populations. Our work highlights how standing variation in gene copy numbers at the global scale can be a major factor driving climatic and metabolic adaptation in microbial species.
  • Publication
    Accès libre
    Population-level transposable element expression dynamics influence trait evolution in a fungal crop pathogen
    The rapid adaptive evolution of microbes is driven by strong selection pressure acting on genetic variation. How adaptive genetic variation is generated within species and how such variation influences phenotypic trait expression is often not well understood though. We focused on the recent activity of transposable elements (TEs) using deep population genomics and transcriptomics analyses of a fungal plant pathogen with a highly active content of TEs in the genome. causes one of the most damaging diseases on wheat, with recent adaptation to the host and environment being facilitated by TE-associated mutations. We obtained genomic and RNA-sequencing data from 146 isolates collected from a single wheat field. We established a genome-wide map of TE insertion polymorphisms in the population by analyzing recent TE insertions among individuals. We quantified the locus-specific transcription of individual TE copies and found considerable population variation at individual TE loci in the population. About 20% of all TE copies show transcription in the genome suggesting that genomic defenses such as repressive epigenetic marks and repeat-induced polymorphisms are at least partially ineffective at preventing the proliferation of TEs in the genome. A quarter of recent TE insertions are associated with expression variation of neighboring genes providing broad potential to influence trait expression. We indeed found that TE insertions are likely responsible for variation in virulence on the host and potentially diverse components of secondary metabolite production. Our large-scale transcriptomics study emphasizes how TE-derived polymorphisms segregate even in individual microbial populations and can broadly underpin trait variation in pathogens.IMPORTANCEPathogens can rapidly adapt to new hosts, antimicrobials, or changes in the environment. Adaptation arises often from mutations in the genome; however, how such variation is generated remains poorly understood. We investigated the most dynamic regions of the genome of a major fungal pathogen of wheat. We focused on the transcription of transposable elements. A large proportion of the transposable elements not only show signatures of potential activity but are also variable within a single population of the pathogen. We find that this variation in activity is likely influencing many important traits of the pathogen. Hence, our work provides insights into how a microbial species can adapt over the shortest time periods based on the activity of transposable elements.
  • Publication
    Accès libre
    Quantitative pathogenicity and host adaptation in a fungal plant pathogen revealed by whole-genome sequencing
    (2024-03-02T00:00:00Z)
    Amezrou, Reda
    ;
    Ducasse, Aurélie
    ;
    Compain, Jérôme
    ;
    Lapalu, Nicolas
    ;
    Pitarch, Anais
    ;
    Dupont, Laetitia
    ;
    Confais, Johann
    ;
    Goyeau, Henriette
    ;
    Kema, Gert H J
    ;
    ;
    Amselem, Joëlle
    ;
    Sanchez-Vallet, Andrea
    ;
    Marcel, Thierry C
    Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.
  • Publication
    Accès libre
    Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen
    (2024-02-09T00:00:00Z)
    Badet, Thomas
    ;
    Tralamazza, Sabina Moser
    ;
    Feurtey, Alice
    ;
    Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
  • Publication
    Accès libre
    Two-speed genomes of Epichloe fungal pathogens show contrasting signatures of selection between species and across populations
    (2024-02-01T00:00:00Z)
    Treindl, Artemis D
    ;
    Stapley, Jessica
    ;
    ;
    Leuchtmann, Adrian
    Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.