Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models
 
  • Details
Options
Vignette d'image

Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models

Auteur(s)
Brunner, Philip 
Centre d'hydrogéologie et de géothermie 
Doherty, J
Simmons, Craig T
In
Water Resources Research, Wiley, 2012/48/7/W07513
Mots-clés
  • Pareto method
  • model calibration
  • parameter identifiability
  • remote sensing
  • soil moisture
  • vadose zone modeling
  • 1846 Model calibration
  • 1847 Modeling
  • 1855 Remote sensing
  • 1865 Soils
  • Pareto method

  • model calibration

  • parameter identifiabi...

  • remote sensing

  • soil moisture

  • vadose zone modeling

  • 1846 Model calibratio...

  • 1847 Modeling

  • 1855 Remote sensing

  • 1865 Soils

Résumé
The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.
Identifiants
https://libra.unine.ch/handle/123456789/4716
_
10.1029/2011WR011342
Type de publication
journal article
Dossier(s) à télécharger
 main article: Brunner_P.-Uncertainty_assessment_and_implications_20170504154109-HF.pdf (2.48 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00